CHAPTER

ARRAYS: LINEAR, PLANAR,
AND CIRCULAR

6.1 INTRODUCTION

In the previous chapter, the radiation characteristics of single-element antennas were
discussed and analyzed. Usually the radiation pattern of a single element is relatively
wide, and each element provides low values of directivity (gain). In many applications
it is necessary to design antennas with very directive characteristics (very high gains)
to meet the demands of long distance communication. This can only be accomplished
by increasing the electrical size of the antenna.

Enlarging the dimensions of single elements often leads to more directive char-
acteristics. Another way to enlarge the dimensions of the antenna, without necessarily
increasing the size of the individual elements, is to form an assembly of radiating
elements in an electrical and geometrical configuration. This new antenna, formed by
multielements, is referred to as an ¢rray. In most cases. the elements of an array are
identical. This is not necessary, but it is often convenient, simpler, and more practical.
The individual elements of an array may be of any form (wires, apertures, etc.).

The total field of the array is determined by the vector addition of the fields
radiated by the individual elements. This assumes that the current in each element is
the same as that of the isolated element. This is usually not the case and depends on
the separation between the elements. To provide very directive patterns, it is necessary
that the fields from the elements of the array interfere constructively (add) in the
desired directions and interfere destructively (cancel each other) in the remaining
space. Ideally this can be accomplished, but practically it is only approached. In an
array of identical elements, there are five controls that can be used to shape the overall
pattern of the antenna. These are:

1. the geometrical configuration of the overall array (linear, circular, rectangular,
spherical, etc.)
the relative displacement between the elements

the excitation amplitude of the individual elements
the excitation phase of the individual elements

the relative pattern of the individual elements
249

3
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The influence that eacht one of the above has on the averall radiation characteristics
will be the subject of this chapter. In many cases the techniques will be illustrated
with examples.

The simplest and one of the most practical arrays is formed by placing the
elements along a line. To simplify the presentation and give a better physical inter-
pretation of the techniques. a two-element array will first be considered. The analysis
of an N-element array will then follow. Two-dimensional analysis will be the subject
at first. In latter sections, three-dimensional techniques will be introduced.

6.2 TWO-ELEMENT ARRAY

Let us assume that the antenna under investigation is an array of two infinitesimal
horizontal dipoles positioned along the z-axis, as shown in Figure 6.1(a). The total
field radiated by the two elements, assuming no coupling between the elements, is
equal to the sum of the two and in the y-z plane it is given by

= k1l = flkry = (B2 e—_ﬂk"ﬁ'(ﬂ'zﬂ
E,=E + E = a,;jnui {e—— cos O + ——cos & (6-1)
dar ry 2
where f3 is the difference in phase excitation between the elements. The magnitude
excitation of the radiators is identical. Assuming far-field observations and referring
to Figure 6.1(b),

8; 2 92 =@ {6“23)
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rp=r——cos b
for phase variations (6-2b)
= o+ = F]
rg =7 > cos
ry=r =7y for amplitude variations (6-2¢)

Equation 6-1 reduces to

— ka'
Er . ﬁﬂjnklufe s COS 6[€+jl'kdms&+ﬂlf1 + e—j(kd::’osﬁl+,3)!2]
. kilgle™ 1
E, = 4,jn Ao cos A2 cos 3 (kd cos 8 + B) (6-3)

It is apparent from (6-3) that the total field of the array is equal to the field of a
single element positioned at the origin multiplied by a factor which is widely referred
to as the array factor. Thus for the two-element array of constant amplitude, the array
factor is given by

AF = 2 cos|i(kd cos 6 + )] (6-4)
which in normalized form can be written as
(AF), = cos[i(kd cos 6 + B)] (6-4a)

The array factor is a function of the geometry of the array and the excitation phase.
By varying the separation d and/or the phase 8 between the elements, the character-
istics of the array factor and of the total field of the array can be controlled.
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Figure 6.1 Geometry of a two-element array positioned along the z-axis.

It has been illustrated that the far-zone field of a uniform two-element array of
identical elements is equal 1o the product of the field of a single element, at a selected
reference point (nsually the origin). and the array factor of that array, That is,

E(total) = [E(single element at reference point)] X [array factor] (6-5)

This is referred to as pattern multiplication for arrays of identical elements, and it is
analogous to the pattern multiplication of (4-59) for continuous sources. Although it
has been illustrated only for an array of two elements, each of identical magnitude, it
is also valid for arrays with any number of identical elements which do not necessarily
have identical magnitudes, phases, and/or spacings between them. This will be dem-
onstrated in this chapter by a number of different arrays.

Each array has its own array factor. The array factor, in general, is a function of
the number of elements, their geometrical arrangement, their relative magnitudes,
their relative phases, and their spacings. The array factor will be of simpler form if
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the elements have identical amplitudes, phases, and spacings. Since the array factor
does not depend on the directional characteristics of the radiating elements themselves.
it can be formulated by replacing the actual elements with isotropic (point) sources.
Once the array factor has been derived using the point-source array, the total field of
the actual array is obtained by the use of (6-5). Each point-source is assumed to have
the amplitude, phase, and location of the corresponding element it is replacing.

In order to synthesize the total pattern of an array, the designer is not only required
to select the proper radiating elements but the geometry (positioning) and excitation
of the individual elements. To illustrate the principles, let us consider some examples.

Example 6.1

Given the array of Figures 6.1(a) and (b), find the nulls of the total field when
d = A4 and

(@) B=10

0) p=+3

©B=-3
SOLUTION

@ B =0

The normalized field is given by
% .
E, = cos 0 cos(z cos 6‘)
The nulls are obtained by setting the total field equal to zero, or

E. = cos ﬁcos('g cos EJ)['%!.},N = (

Thus
cos 6, = 0= 0, = 90°
and
T T
cos(g cos H,,) =0 wgms 6, = 7 —Et:» #, = does not exist

The only null occurs at # = 90° and is due to the pattern of the individual
elements. The array factor does not contribute any additional nulls because there is
not enough separation between the elements to introduce a phase difference of 180°
between the elements. for any observation angle.

™

(b) B =+
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The normalized field is given by

E, = cos #cos —I—F(cos 8 l)]

The nulls are found from

E, = cos 0 cos g{cos 0+ 1}]|gwﬁ =

Thus
cos fl, = 0= 0, = 90°
and
k) T T 3
cos[z (cos 8 + l')il|,,=,,,u =10 Lbz(cos g, + 1) = ED g =10
and
:a‘%r(cns g, + 1) = —%TD 6, = does not exist

The nulls of the array occur at § = 90° and 07, The null at 0° is introduced by
the arrangement of the elements (array factor). This can also be shown by physical
reasoning, as shown in Figure 6.2(a). The element in the negative z-axis has an initial
phase lag of 90° relative to the other element. As the wave from that element travels
toward the positive z-axis (# = 0° direction). it undergoes an additional 90° phase
retardation when it arrives at the other element on the positive z-axis. Thus there is a
total of 180° phase difference between the waves of the two elements when travel is

£}
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Figure 6.2 Phase accumulation for two-element array for null formation toward 6 = 0°
and 180°,
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toward the positive z-axis (# = 0°). The waves of the two elements are in phase when

they travel in the negative z-axis (@ = 180°), as shown in Figure 6.2(b).
T
c = =
(©) B 3

The normalized field is given by
E,, = cos # cos gtcos ¢6—1)

and the nulls by

-
E,, = cos 0 cos| 7 (cos 6 — 1) lpmg, =0

Thus

cos f, = 0= 6, = 90°
and

Cos Ei.'cos g, = 1y| =06 Dz(cos 6, — 1) = T 6, = does not exist

4 4 2
and
D%(cos 0,—1)= —-gw 6, = 180°

The nulls occur at 90° and 180°. The element at the positive z-axis has a phase lag of
907 relative to the other, and the phase difference is 180° when travel is restricted
toward the negative z-axis. There is no phase difference when the waves travel toward

the positive z-axis. A diagram similar to that of Figure 6.2 can be used to illustrate
this case.

To better illustrate the pattern multiplication rule, the normalized patterns of the single
element, the array factor, and the total array for each of the above array examples are
shown in Figures 6.3, 6.4(a), and 6.4(b). In each figure, the total pattern of the array
is obtained by multiplying the pattern of the single element by that of the array factor.
In each case, the pattern is normalized to its own maximum. Since the array factor
for the example of Figure 6.3 is nearly isotropic (within 3 dB). the element pattern
and the total pattern are almost identical in shape. The largest magnitude difference
between the two is about 3 dB, and for each case it occurs toward the direction along
which the phases of the two elements are in phase quadrature (90° out of phase). For
Figure 6.3 this occurs along = 0° while for Figures 6.4(a,b) this occurs along
@ = 90°. Because the array factor for Figure 6.4(a) is of cardioid form, its correspond-
ing element and total patterns are considerably different. In the total pattern, the null
at f# = 90° is due to the element pattern while that toward ¢ = 0° is due to the array
factor. Similar results are displayed in Figure 6.4(b).
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Figure 6.3 Element, array factor, and total field patterns of a two-element ar-
ray of infinitesimal horizontal dipoles with identical phase excitation (8 = 0°,
d = M4).

Example 6.2

Consider an array of two identical infinitesimal dipoles oriented as shown in Figures
6.1(a) and (b). For a separation ¢ and phase excitation difference 8 between the
elements, find the angles of observation where the nulls of the array occur. The
magnitude excitation of the elements is the same.

SOLUTION
The normalized total field of the array is given by (6-3) as
E,, = cos 0 cos [4(kd cos 6 + B)]
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Figure 6.4 Pattern multiplication of element, array factor, and total array patterns
of a two-element array of infinitesimal horizontal dipoles with (a) g = +90°,
d = A4,

To find the nulls, the field is set equal to zero, or
E,, = cos 6 cos[3(kd cos 6 + B))|g=g, = 0
Thus
cos B, = 0= 6, = 90°

and

cos[% (kd cos 6, + ﬁ)] =0= :,12— (kd cos 6, + B) = i(2n2+ 1)71'

_qf wk
= @, = cos l(ﬁ[_ﬁ + Cr + 1)'17‘}),
= 0; 1; 25
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180°
Total
Figure 6.4 (b) Continued (8 = —90° d = A/4).

The null at # = 90° is attributed to the pattern of the individual elements of the array
while the remaining ones are due to the formation of the array. For no phase difference
between the elements (8 = 0), the separation ¢ must be equal or greater than half a
wavelength (d = A/2) in order for at least one null, due to the formation of the array,
to oceur,

6.3 N-ELEMENT LINEAR ARRAY:
UNIFORM AMPLITUDE AND SPACING

Now that the arraying of elements has been introduced and it was illustrated by the
two-element array, let us generalize the method to include N elements, Referring to
the geometry of Figure 6.5(a), let us assume that all the elements have identical
amplitudes but each succeeding element has a B progressive phase lead current
excitation relative to the preceding one (3 represents the phase by which the current
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Fn

(a1) Geomelry (b} Phasor diagram

Figure 6.5 Far-lield geometry and phasor diagram of N-element array of isotropic sources
positioned along the z-axis.

in each element leads the current of the preceding element). An array of identical
elements all of identical magnitude and each with a progressive phase is referred to
as a uniform array. The array factor can be obtained by considering the elements to
be point sources. If the actual elements are nol isotropic sources, the total field can
be formed by multiplying the array factor of the isotropic sources by the field of a
single element. This is the pattern multiplication rule of (6-5), and it applies only for
arrays of identical elements. The array factor is given by

AFE =1 + e+jfkdwsﬂ-kﬁ) i e-i—ﬂ(kdtus 4 @) £ sunsash ej{N--I}(ka‘cms{H et
N
AF = > eitn=1)kdcos o+ p) (6-6)

n=1

which can be written as

N
AR = 2 edtn=1 (6-7)

n=1

where ¢ = kd cos 6 + B (6-7a)

Since the total array factor for the uniform array is a summation of exponentials, it
can be represented by the vector sum of N phasors each of unit amplitude and
progressive phase i) relative to the previous one. Graphically this is illustrated by the
phasor diagram in Figure 6.5(b). It is apparent from the phasor diagram that the
amplitude and phase of the AF can be controifed in uniform arrays by properiy
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selecting the relative phase i between the elements: in nonuniform arrays, the am-
plitude as well as the phase can be used to control the formation and distribution of
the total array factor.

The array factor of (6-7) can also be expressed in an alternate, compact and closed
form whose functions and their distributions are more recognizable. This is accom-
plished as follows.

Multiplying both sides of (6-7) by /%, it can be written as
(AF)e" = e + o2V + o 4 ... 4 @N=1 4 oMY (6-8)
Subtracting (6-7) from (6-8) reduces to
AFe!" — 1) = (—1 + &™) (6-9)

which can also be written as

N LNV — (N
AF = | €= 1] _ - & £ -
| PRI R

ol — —e
5. |
sin (E l/;)
= plN=b2w| (6-10)

sin (% t,b)

If the reference point is the physical center of the array, the array factor of (6-10)

reduces to
(M
sin {5 i

i

P (6-10a)

sin (% t,r'.r)

For small values of i1, the above expression can be approximated by

in (34
sin 21#

i

2

AF = (6-10b)

The maximum value of (6-10a) or (6-10b) is equal to N. To normalize the array factors
so that the maximum value of each is equal to unity, (6-10a) and (6-10b) are written
in normalized form as (see Appendix II)
(54
sin [ —1
2

(AF), = Ll < (6-10c¢)
Nl [
sin (5 tp)
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and (see Appendix 1)

-

(AE) = —r (6-10d)
l![

-

3|z

To find the nulls of the array, (6-10c) or (6-10d) are set equal to zero. That is,

. (N N | 2n
sin (Ew) =0 EDEI,-‘;{,;=,;# = +pm=f, = cos '[Er—d—(—ﬁ e E;ﬂ')]
(6-11)
== L, 20 B
n#= N, 2N, 3N, ... with (6-10c)
Forn = N. 2N, 3N, . ... (6-10c) attains its maximum values because it reduces to a

sin(0)/0 form. The values of n determine the order of the nulls (first, second, etc.).
For a zero to exist. the argument of the arccosine cannot exceed unity. Thus the
number of nulls that can exist will be a function of the element separation ¢ and the
phase excitation difference f3.
The maximum values of (6-10c) occur when
4
2

| ; A
= E(kd cos 0 + B)|f!=ﬁ,,, = tmr=0, = cos"[m(uﬁ i 'Zm’n')]

i ) e (6-12)
The array factor of (6-10d) has only one maximum and occurs when m = 0 in
(6-12). That is,

A
6, = cos” '(2—7%) (6-13)

which is the observation angle that makes iy = 0,
The 3-dB point for the array factor of (6-10d) occurs when (see Appendix I)

N
%q; = S(kd cos 0 + Plg=g = +1.391

A 2.782 i
; = B [ bl 6-14
= ), = cos [de( B = ~ )] (6-14)
which can also be written as
LA A 2.782 )
b, = 5 sin [——2‘%{( = S 3 (6-14a)

For large values of d(d = A), it reduces to

6, = ["—T et (—B g 2'782)] (6-14b)
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The half-power beamwidth ), can be found once the angles of the first maximum
(6,,) and the half-power point () are found. For a symmetrical pattern
@;, - 2[9,._.1 et 6;,| (6-14(:)

For the array factor of (6-10d), there are secondary maxima (maxima of minor
lobes) which oceur approximately when the numerator of (6-10d) attains its maximum
value. That is,

sin (%I 1{:)

Il

N N
sin [E{M cos 0 + B]j||ﬁ=ﬁx =*]|= E(kd cos 0 + Blo=s,

T L e —— Y ~B+(23+1)
= + 3 T = COS B + N | s

s=1,2,3,... (6-15)

which can also be written as

T (. 2s + 1 o :
{mz[ ﬁi( N )‘”]} $=123... (6-15a)

For large values of d(d = \), it reduces to

™ A 25 1
ot | g s 1
% =3 qud[ p ( N )W] b (6-135}

The maximum of the first minor lobe of (6-10c¢) occurs appoximately when (see
Appendix 1)

6, =

91y
|
s
=

N N 3w
or when
A 3ar
= gt A T I + — -
#, = cos {Zm’[ B = N]} (6-16a)
At that point, the magnitude of (6-10d) reduces to
sin (gd;)
2
(AF), = | ——— =—= (212 (6-17)
N 3
'2_4’ 0=,
§=1
which in dB is equal to
(AF), = 20 logm(g%-r) = —13.46 dB (6-17a)

Thus the maximum of the first minor lobe of the array factor of (6-10d) is 13.46 dB
down from the maximum at the major lobe. More accurate expressions for the angle.
beamwidth, and magnitude of first minor lobe of the array factor of (6-10d) can be
obtained. These will be discussed in Chapter 12.
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6.3.1 Broadside Array

In many applications it is desirable to have the maximum radiation of an array directed
normal to the axis of the array (broadside; 6 = 907 of Figure 6.5(a)). To optimize the
design, the maxima of the single element and of the array factor should both be
directed toward 6 = 90°. The requirements of the single elements can be accomplished
by the judicious choice of the radiators. and those of the array factor by the proper
separation and excitation of the individual radiators. In this section. the requirements
that allow the array factor to *‘radiate’” efficiently broadside will be developed.
Referring to (6-10¢) or (6-10d), the maximum of the array factor occurs when

= kdcos @+ =10 (6-18)

Since it is desired to have the maximum directed toward 6 = 90°, then

h = kd cos 0 + Bly—op- =B =0 (6-18a)

Thus to have the maximum of the array factor of a uniform linear array directed
broadside to the axis of the array. it is necessary that all the elements have the same
phase excitation (in addition to the same amplitude excitation). The separation be-
tween the elements can be of any value. To ensure that there are no principal maxima
in other directions, which are referred to as grating lobes, the separation between the
elements should not be equal to multiples of a wavelength (d # nA,n = 1,2,3...)
when 8 = 0.Ifd = nA,n=123....and 8 = 0, then

Y = kd cos 6 + H‘d__ i =2ancosb| . .= £2nw (6-19)
B=0

DIEIR i s T

This value of 1y when substituted in (6-10c) makes the array factor attain its maximum
value. Thus for a uniform array with § = 0 and d = nA, in addition to having the
maxima of the array factor directed broadside (# = 907) to the axis of the array, there
are additional maxima directed along the axis (6 = 0° 180°) of the array (end-fire
radiation).

One of the objectives in many designs is to avoid multiple maxima, in addition
to the main maximum, which are referred to as grating lobes. Often it may be required
to select the largest spacing between the elements but with no grating lobes. To avoid
any grating lobe the largest spacing between the elements should be less than one
wavelength (d .. < A).

To illustrate the method., the three-dimensional array factor of a 10-element (N
= 10) uniform array with 8 = 0 and d = A/4 is shown plotted in Figure 6.6(a). A
907 angular sector has been removed for better view of the pattern distribution in the
elevation plane. The only maximum occurs at broadside (6 = 90°). To form a
comparison. the three-dimensional pattern of the same array but with d = A is also
plotted in Figure 6.6(b). For this pattern, in addition to the maximum at 6 = 90°,
there are additional maxima directed toward # = 0° 180°. The corresponding two-
dimensional patterns of Figures 6.6(a,b) are shown in Figure 6.7.

If the spacing between the elements is chosen between A < d < 2A, then the
maximum of Figure 6.6 toward # = 0° shifts toward the angular region 0° < § <
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{a) Broadside

4

by Broadsidedend-fire
Figure 6.6 Three-dimensional amplitude patterns for broadside, and broadside/end-fire
arrays.
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Figure 6.7 Array factor patterns of a 10-element uniform amplitude broadside
array (N = 10, 8 = 0),

90° while the maximum toward 6 = [80° shifts toward 90° < 6 < 180°. When d =
2 A, there are maxima toward 0°, 60°, 90°, 120° and 180°.

In Tables 6.1 and 6.2 the expressions for the nulls, maxima. half-power points,
minor lobe maxima, and beamwidths for broadside arrays have been listed. They are
derived from the more general ones given by (6-10c)—(6-16a).

6.3.2 Ordinary End-Fire Array

Instead of having the maximum radiation broadside to the axis of the array, it may
be desirable to direct it along the axis of the array (end-fire). As a matter of fact, it
may be necessary that it radiates toward only one direction (either = 0% or 180° of
Figure 6.5).
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Table 6.1 NULLS, MAXIMA, HALF-POWER
POINTS. AND MINOR LOBE MAXIMA
FOR UNIFORM AMPLITUDE

BROADSIDE ARRAYS
NULLS 6, = cos™ (1%3)
n= 1,23 ..
n## N 2N 3N, ...
MAXIMA t, = cos ™’ (ifz;—’\)
m=0 1,2 ...
HALF-POWER &t i g 1.391A
POINTS s =T
medfA < 1
MINOR LOBE P Y R
MAXIMA o T2\ N
2l e [ o
mdiA < 1
To direct the maximum toward 6 = (°,
=kdcos O + Blo—y = kd + =08 = —kd (6-20a)

If the maximum is desired toward ¢ = 1807, then

W=kdcos B + Blywsy = —kd + B =08 = kd (6-20b)

Thus end-fire radiation is accomplished when 8 = — kd (for 0 = 0") or B = kd (for
6 = 180°).

If the element separation is d = A/2, end-fire radiation exists in both directions
(6= 0"and 6 = 180°). If the element spacing is a multiple of a wavelength (d = nA,

Table 6.2 BEAMWIDTHS FOR UNIFORM AMPLITUDE

BROADSIDE ARRAYS

FIRST NULL o 2|7 _ ot X
BEAMWIDTH (FNBW) el PR T

[ 1.391
HALF-POWER 0,=2| 7~ cos”! ( de’\)]
BEAMWIDTH i

AMWIDTH (HPBW) o &

- 2
FIRST SIDE LOBE 6,=2 |7 — cos™ (?_,)]
BEAMWIDTH (FSLBW) 2 2dN
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tay =0y (hy &= 180

Figure 6.8 Three-dimensional amplitude patterns for end-fire arrays toward 6 = 0 and

180",

n=1,2,3,...) then in addition to having end-fire radiation in both directions, there
also exist maxima in the broadside directions. Thus ford = nA,n = 1,2, 3, . . . there
exist four maxima; two in the broadside directions and two along the axis of the array,
To have only one end-fire maximum and to avoid any grating lobes, the maximum
spacing between the elements should be less than d,,, < A/2.

The three-dimensional radiation patterns of a 10-element (N = 10) array with d
= M4, B = +kd are plotted in Figure 6.8. When 8 = — kd. the maximum is directed
along 0 = 07 and the three-dimensional patiern is shown in Figure 6.8(a). However,
when 8 = +kd. the maximum is oriented toward # = 180°, and the three-dimensional
pattern is shown in Figure 6.8(b). The two-dimensional patterns of Figures 6.8(a, b)
are shown in Figure 6.9. To form a comparison, the array factor of the same array (N
= 10) but with d = A and 3 = —kd has been calculated. Its pattern is identical to
that of a broadside array with N = 10, d = A, and it is shown plotted in Figure 6.7.
It is seen that there are four maxima; two broadside and two along the axis of the
array.

The expressions for the nulls, maxima. half-power points, minor lobe maxima,
and beamwidths, as applied to ordinary end-fire arrays, are listed in Tables 6.3
and 6.4,

6.3.3 Phased (Scanning) Array

In the previous two sections it was shown how to direct the major radiation from an
array, by controlling the phase excitation between the elements. in directions normal
(broadside) and along the axis (end-fire) of the array. 1t is then logical to assume that
the maximum radiation can be oriented in any direction to form a scanning array. The
procedure is similar to that of the previous two sections.
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Figure 6.9 Array factor patterns of a 10-element uniform amplitude end-fire
array (N = 10, d = A4).

Let ug assume that the maximum radiation of the array is required to be oriented
at an angle &, (0° = 4, = 180°). To accomplish this, the phase excitation 3 between
the elements must be adjusted so that

W=rkdcos 0 + Bly—g = kdcos by + B=0= B = —kd cos Bﬂ(ﬁ-Zl)

Thus by controlling the progressive phase difference between the elements, the max-
imum radiation can be squinted in any desired direction to form a scanning array.
This is the basic principle of electronic scanning phased array operation. Since in
phased array technology the scanning must be continuous, the system should be
capable of continuously varying the progressive phase between the elements. In
practice, this is accomplished electronically by the use of ferrite or diode phase
shifters. For ferrite phase shifters, the phase shift is controlled by the magnetic field
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Table 6.3 NULLS, MAXIMA, HALF-POWER
POINTS, AND MINOR LOBE MAXIMA
FOR UNIFORM AMPLITUDE
ORDINARY END-FIRE ARRAYS

; = naA
NULLS g, = cos ! (l - KQ’)
= 1, 2: 3000
n # N, 2N, 3N,
. mA
MAXIMA 8, =cos v|1 — =
m=4 12
HALF-POWER B o i [ o 1.391A
POINTS 4 =R wdN
TdlA <1
MINOR LOBE - Qs + DA
MAXIMA ; ' INd
& = 12,300
wd/A <1

within the ferrite, which in turn is controlled by the amount of current flowing through
the wires wrapped around the phase shifter.

For diode phase shifter using balanced, hybrid-coupled varactors, the actual phase
shift is controlled either by varying the analog bias dc voltage (typically 0-30 volts)
or by a digital command through a digital-to-analog (D/A) converter [1].

To demonstrate the principle of scanning, the three-dimensional radiation pattern
of a 10-element array, with a separation of A/4 between the elements and with the
maximum squinted in the 6, = 60° direction, is plotted in Figure 6.10(a). The
corresponding two-dimensional pattern is shown in Figure 6.10(b).

The half-power beamwidth of the scanning array is obtained using (6-14) with
B = —kd cos B Using the minus sign in the argument of the inverse cosine function
in (6-14) to represent one angle of the half-power beamwidth and the plus sign to

Table 6.4 BEAMWIDTHS FOR UNIFORM AMPLITUDE
ORDINARY END-FIRE ARRAYS

FIRST NULL PP
BEAMWIDTH (ENBW) n ' Nd
HALF-POWER @, = 2cos™" ( { v }'331;‘)
IDTH (HPBW "T
BEAMW (HPBW) .
B 3A
FIRST SIDE LOBE 0, =2cos! (1 - =
BEAMWIDTH (FSLBW) d

mdiA < |
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() Thiee-dimensioni]

s e

By = 607 0° 8o =60

Relative power
(dB down)

180°

(b} Two-dimensionl

Figure 6.10 Three- and two-dimensional array factor patterns of a 10-clement uniform am-
plitude scanning array (N = 10, B = —kd cos fly, fhy = 60° d = A4.)
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represent the other angle. then the total beamwidth is the difference between these
two angles and can be written as

A 2,782 A 2.782
Gy e a=1 [ 2% FE. = e oL e— ; A
®, = cos [de (kd cos 6, e )] cos [27&’1 (kd cos fy N ):'

B 1 b — 2.782 i b 2.782 c9n
= 'COS cos fh Nkd COs os ——de ( )
Since N = (L + d)ld, (6-22) reduces to [2]
@, = cos ! [cos By — 0.443 :I
& : 4 (6-22a)
P | 3
cos ,:ws &y + 0.44; L+ d)]

where L is the length of the array. Equation (6-22a) can also be used to compute the
half-power beamwidth of a broadside array. However, it is not valid for an end-fire
array. A plot of the half-power beamwidth (in degrees) as a function of the array




6.3 N-Element Linear Array: Uniform Amplitude and Spacing 271

length is shown in Figure 6.11. These curves are valid for broadside. ordinary end-
fire, and scanning uniform arrays (constant magnitude but with progressive phase
shift). In a later section it will be shown that the curves of Figure 6.11 can be used,
in conjunction with a beam broadening factor [2], to compute the directivity ol
nonuniform amplitude arrays.

6.3.4 Hansen-Woodyard End-Fire Array

The conditions for an ordinary end-fire array were discussed in Section 6.3.2. It was
concluded that the maximum radiation can be directed along the axis of the uniform
array by allowing the progressive phase shift g between elements to be equal to
(6-20a) for # = 0° and (6-20b) for # = 180°.

To enhance the directivity of an end-fire array without destroying any of the other
characteristics, Hansen and Woodyard [3] in 1938 proposed that the required phase
shift between closely spaced elements of a very long arrayt should be

292 T :
= (kd e T) = — (ka’ + E) = for maximum in 6 = 0° | (6.23y)

J 2.92 T . ; ]
B=+ (kd + T) = + (k'd ¥ N) => for maximum in 6 = 180° | (6.23p)

These requirements are known today as the Hansen-Woodyard conditions for end-
fire radiation. They lead to a larger directivity than the conditions given by (6-20a)
and (6-20b). It should be pointed out. however, that these conditions do not necessarily
vield the maximum possible directivity. In fact, the maximum may not even occur at
A = 07 or 180° its value found using (6-10c) or (6-10d) may not be unity, and the
side lobe level may not be — 13.46 dB. Both of them, maxima and side lobe levels,
depend on the number of array elements, as will be illustrated.

To realize the increase in directivity as a result of the Hansen-Woodyard condi-
tions, it is necessary that, in addition to the conditions of (6-23a) and (6-23b). |y
assumes values of

For maximum radiation along 0 = 0°

|[r!)| = |kd cos 0 + .B|H-=ﬂ° = ?NT and |IM = |M cos 6 + ﬂ|§-_-[gt}° = qr (6-24a)

For maximum radiation along 0 = 180°

W = [kd cos 8 + Bl iz = g and Y| = |kd cos 0 + Blo—y = 7 (6-24b)

The condition of || = @/N in (6-24a) or (6-24b) is realized by the use of (6-23a) or
(6-23b), respectively. Care must be exercised in meeting the requirement of [ =

tIn principle, the Hansen-Woodyard condition was derived for an infinitely long antenna with continuous
distribution. It thus gives good resulis for very long, finite lenath discrete arrays with closely spaced
clements.



272 Chapter 6 Arrays: Linear, Planar, and Circular

for each array. For an array of N elements, the condition of | = is satisfied by
using (6-23a) for 8 = 0°, (6-23b) for # = 180°, and choosing for each a spacing of

N =1} A
= |—] = Ep !
d ( N ] 7 (6-25)
If the number of elements is large, (6-25) can be approximated by
A ;
d = ) (6-25a)

Thus for a large uniform array, the Hansen-Woodyard condition can only yield an
improved directivity provided the spacing between the elements is approximately A/4.

To illustrate the principles. the patterns of a 10-element (N = 10) array with
d = MA(B = —3@/5) and d = M2 (B = —11@/10) have been plotted in Figure
6.12. In both cases the desired maximum radiation should be toward ¢ = 0°[f =
—(kd + a/N)]. It is apparent that the main lobe of the d = A/4 pattern is much
narrower when contrasted to its counterpart of Figure 6.9 using the ordinary end-fire
conditions of (6-20a). In fact, the 3-dB beamwidth of the d = A/4 pattern in Figure
6.12 is equal to 37° compared to 74° for that of Figure 6.9.

To make the comparisons more meaningful, the directivities for each of the
patterns of Figures 6.9 and 6.12 have been calculated, using numerical integration,
and it is found that they are equal to 11 and 19, respectively. Thus the Hansen-
Woodyard conditions realize a 73% increase in directivity for this case.

As will be shown in Section 6.4 and listed in Table 6.7, the directivity of a
Hansen-Woodyard end-fire array is always approximately 1.789 times (or 2.5 dB)
greater than the directivity of an ordinary end-fire array. The increase in directivity
of the pattern in Figure 6.12 for d = A/4 over that of Figure 6.9 is at the expense of
an increase of about 4 dB in side lobe level. Therefore in the design of an array, there
is a trade-off between directivity (or half-power beamwidth) and side lobe level.

To show that (6-23a) and (6-23b) do ner lead to improved directivities over those
of (6-20a) and (6-20b) if (6-24a) and (6-24b) are not satistied, the pattern for the same
array (N = 10) but withd = M2 (B = —1147/10) that was plotted in Figure 6.12
will be discussed. Even though this pattern exhibits a very narrow lobe in the 6 = (°
direction. its back lobes are larger than its main lobe. The d = A/2 pattern fails to
realize a larger directivity because the necessary |- 50 = 7 condition of (6-244)
is not satisfied. That is,

W] = |tkd cos B + By e = |- Qkd + WN)y—p2 = 2.17 (6-26)

B =~ (kd+7IN) N=1D
which is not equal to 7 as required by (6-24a). Similar results occur for spacings
other than those specified by (6-25) or (6-25a).

To better understand and appreciate the Hansen-Woodyard conditions, a succinet
derivation of (6-23a) will be outlined. The procedure is identical to that reported by
Hansen and Woodyard in their classic paper |3].

The array factor of an N-element array is given by (6-1(0c) as

N
sin [5 (kd cos 6 + B)j|

!

sin [12 (ke cos 6 + ﬁ)]
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10

d =24

————— d =22

Figure 6.12  Array factor patterns of a 10-element uniform amplitude Hansen-Woodyard
end-fire array [N = 10, 8 = —(kd + @N)]

and approximated, for small values of i (¢f = kd cos 6 + B), by (6-10d) or

sin I:g (kd cos 0 + ﬁ)]
(AF), = (6-27a)

[g“ (kd cos 6 + B):|

If the progressive phase shift between the elements is equal to
B= —pd (6-28)
where p is a constant, (6-27a) can be written as

sinfg(kcos § — p)|| | sin(2)
qglkecos0 —py | | Z

(A-F }u =3 { (6“29)
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where

_ N

2

Z = glkcos 6 — p)

q

The radiation intensity can be written as

U(9) = [(AR), I = [*‘-‘_‘"Z(Z)]”

whose value at # = 0° is equal to

sing(k cos 8 — p)l 3
gk cos @ — p)

Uy = {

_ {sin[q('k -’
4=0 qtk — p)

(6-29a)

(6-29h)

(6-30)

}- (6-304)

Dividing (6-30) by (6-30a), so that the value of the array factor is equal to unity at

f = (°, leads to

(k — sin[¢g(k cos 6 — 2 v sin(Z) a
U@, = { _qtk — p) ll[fff.1 1 P).]} _ [ (Z 2}
sinlg(k — p)| gk cos 8 — p)| sinfv) Z
where
v= gk — p) (6-31a)
Z = g(kcos 8 — p) (6-31b)
The directivity of the array factor can be evaluated using
4WUII1EL\ Uﬂliﬂt
Py == = s 6-32
i Py Us (6-32)
where Uy is the average radiation intensity and it is given by
By 0 o » Uiy si 0.do dd
" 4x  4xlo Jo e
2 . 2
1| w J' | sin(z) | .
e sin6d 27
Z[Sin(v)] 0|: > ] sin 6 d6 (6-33)

By using (6-31a) and (6-31b), (6-33) can be written as

g = 1| 9%k —p
Y7 2] sinfgk — p)]

To maximize the directivity, as given by (6-32). (6-33a)
Performing the integration, (6-33a) reduces to
v

I o [cos@v) — 1]
o= 2kg I;:s'm(v)] |:2 "

2u
v =gk — g

)

gk cos 6 — p)

+ s,-(z-n)}

where

el 4 —— - =
]J; [un[q(k cos 0 P)]] sin 0d0  (6-33a)

must be minimized,

|
—e(v) (6-34)

kg

(6-34a)




6.3 N-Element Linear Array: Uniform Amplitude and Spacing 275

175

1.50

1,00

£iul

075

0.50

0.25

|
| | 146y, 1

[t} .5 -1.0 =13 ~2.0
v

Figure 6.13 Variation of g(v) (see Eq. 6-34c¢) as a function of .

-

Si(z) = f it (6-34b)
(VI |
v |[#  Teoszu) — 1]
gl = |:sin(v):| |:5 ot T + 5;(2v) (6-34¢)

The function g(v) is plotted in Figure 6.13 and its minimum value occurs when
Nd
v=glk —p) =k —p) = —146 (6-35)
Thus

.92
2 ) (6-36)

,B=—Pd=—(kd+—N“—

which is the condition for end-fire radiation with improved directivity (Hansen-Wood-
yard condition) along 6 = 0°, as given by (6-23a). Similar procedures can be followed
to establish (6-23b).

Ordinarily, (6-36) is approximated by

2.92 T
ol e
with not too much relaxation in the condition since the curve of Figure 6.13 is very
flat around the minimum point v = — 1.46. Its value at v = —1.57 is almost the

same as the minimum at v = — 1.46.
The expressions for the nulls, maxima, half-power points, minor lobe maxima,
and beamwidths are listed in Tables 6.5 and 6.6.
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Table 6.5 NULLS, MAXIMA, HALF-POWER POINTS, AND
MINOR LOBE MAXIMA FOR UNIFORM
AMPLITUDE HANSEN-WOODYARD
END-FIRE ARRAYS

A
NULLS =cos~'|1 +d - 2m—
U g, =cos [l ( ”)ZdN]
r i e S
n=N2N,3N,...
MAXIMA 6, = cos™' 1+{1—(2r+l}]L
! = 88 s 2Nd
m= 1,23 .0
Tedfd << |
HALF-POWER . A
POINTS 0, = cos (1 0.1398Nd)
mdIA <= |
N large
MINOR LOBE 8 = aos~ify 28
MAXIMA $ Nd
s=1,23...,
mdIA < |

6.4 N-ELEMENT LINEAR ARRAY: DIRECTIVITY

The criteria that must be met to achieve broadside and end-fire radiation by a uniform
linear array of N elements were discussed in the previous section. It would be instruc-
tive to investigate the directivity of each of the arrays. since it represents a figure-of-
merit on the operation of the system.

6.4.1 Broadside Array
As a result of the criteria for broadside radiation given by (6-18a), the array factor
for this form of the array reduces to

sin (g kel cos 9)
(AF), = L0 S | (6-38)

N 1
sin EM cos

which for a small spacing between the elements (¢ << A) can be approximated by

N
sin (E kd cos 6)

ARy = —————— (6-38a)

(%( kel cos 6)
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Table 6.6 BEAMWIDTHS FOR UNIFORM AMPLITUDE
HANSEN-WOODYARD END-FIRE ARRAYS

FIRST NULL i 2005_,(1 B L)

BEAMWIDTH (FNBW) 24N
HALF-POWER " . Ko
BEAMWIDTH (HPBW) B = o (1 Bl Nd)
A< ]
N large
FIRST SIDE LOBE = Bty A
BEAMWIDTH (FSLBW) Q= B (' Nd)
edfA=< |
The radiation intensity can be written as
N 2
sin (Ekd cos 6)
7 sin(Z) |”
U®) = (AR, P = | —— | = |22 (6-39)
N Z
—kd cos 0
2
N
7= Ekd cos 8 (6-39a)

The directivity can be obtained using (6-32) where U, of (6-39) is equal to
unity (Upee = 1) and it occurs at # = 90°, The average value U, of the intensity

reduces to
1 L ("[sin2) ]
Uy = E;_Prbd = EJ; [ =~ ] sin 8 db

2

(J:I kd cos 0

= lJ. sin 6 dfl (6-40)
—Ad cos 0

By making a change of variable. that is,

Z = gkd'c_os 7} (6-40a)

dZ = — gkd sin 0 d6 (6-40b)

(6-40) can be written as

Ij“’”k‘” gz 1 [Nz ,
U= gl o || EEmm] o || 2 )
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For a large array (Nkd/2 — large). (6-41) can be approximated by extending the limits

to infinity. That 1s.

| J'*’w"w sinz | 1 (**[sinZz P
S el e == &
Yo Nkd ) -wwar | Z & Nkd)-=| Z

“Tsin@ | ,,
J.‘*I: 7 ]a’Z—w

Since

(6-41a) reduces to

Y= Nua

The directivity of (6-32) can now be written as

_Um‘d"n_N_kd_') g
Do = Upg e

Using
L=(N-1)d
where L is the overall length of the array. (6-42) can be expressed as

ol

which for a large array (L = d) reduces to

oo 30

(6-41a)

(6-41b)

(6-41c¢)

(6-42)

(6-43)

(6-44)

(6-44a)

Example 6.3

Given a linear, broadside, uniform array of 10 isotropic elements. (N = 10) with a
separation of A4 (d = A4) between the elements, find the directivity of the array.

SOLUTION
Using (6-44a)

Dy = ZN(%) = S(dimensionless) = 10 logy(5) = 6.99 dB
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6.4.2 Ordinary End-Fire Array

For an end-fire array, with the maximum radiation in the @ = 0° direction, the array
factor is given by

sin [gkd(cos g — 1)]
(AF), =

(6-45)
N sin [%kd(co_s @.— 1)]

which, for a small spacing between the elements (d << A), can be approximated by

N
sin I:E kd(cos 6 — 1'}]

(AF), = - (6-45a)
[ﬂkd(cos e—-1)
2 -
The corresponding radiation intensity can be written as
T2
sin Ekf;;h(a::ms 0—1)
2 J sin(2) |?
U() = [(AF), ] = = [T (6-46)
—kd(cas 8 — 1)
2
N
Z= Ekd(cos 8—1) (6-46a)
whose maximum value is unity (Uy,, = 1) and it occurs at # = 0°. The average
value of the radiation intensity is given by
B 2
, sin [gkd(cos g — I)]
I by o
Uu:—f f sin 6 df ddp
dar Jo N
TR N deos 8 — 1)
i 2
P 2
sin gkd(cos e — 1}]
| Y iic = ;
= E J;} N sin @ df (6-‘47)
—kd(cos 1 — 1)
2
By letting
N
7= Ekd(cm = 1) (6-47a)

dZ = — gkd sin 6 dfl (6-47b)



280 Chapter 6 Arrays: Linear, Planar, and Circular

(6-47) can be writlen as

1 [ M [sinz) ] 1 J’ M gingz) |2
Uy = — wied Jo [ 7 dZ = Nid Jo 7 dz (6-48)
For a large array (Nkd — large), (6-48) can be approximated by extending the limits
to infinity. That is,
1 (™[ sinz) |* 1 (] sin) |
Upg= — 1Z = — 1z ’
©7 Nkd Jo [ z | Nk |z | (e
Using (6-41b) reduces (6-48a) to
T
Uy > Nkd (6-48b)
and the directivity to
Ty 2Nkd {
Dy =D oy (‘—) (6-49)
Un ™
Another form of (6-49), using (6-43), is
d L\ [d
p=snl) =41 + 90 -

which for a large array (L = d) reduces to

d L\ [d\t=¢ (L _
Dy —4N(X) = 4(1 + 2) (X) ~ 4(;) (6-49b)

It should be noted that the directivity of the end-fire array, as given by (6-49)-
(6-49b). is twice that for the broadside array as given by (6-42)—(6-44a).

Example 6.4

Given a linear, end-fire, uniform array of 10 elements (N = 10) with a separation of
M4 (d = AM4) between the elements, find the directivity of the array factor. This array
is identical to the broadside array of Example 6.3.

SOLUTION
Using (6-49)

d
Dy = 4N(X) = l0(dimensionless) = 10 log,,(10) = 10 dB

This value for the directivity (Dy = 10) is approximate, based on the validity of
(6-48a). However, it compares very favorably with the value of D, = 10.05 obtained
by numerically integrating (6-45) using the computer program at the end of Chap-
ter 2.
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6.4.3 Hansen-Woodyard End-Fire Array

For an end-fire array with improved directivity (Hansen-Woodyard conditions) and
maximum radiation in the # = 0° direction, the radiation intensity (for small spacing
between the elements, d << A) is given by (6-31)—(6-31b). The maximum radiation
intensity is unity (U, = 1), and the average radiation intensity is given by (6-34)
where ¢ and v are defined, respectively, by (6-29a) and (6-34a). Using (6-29a),
(6-344a), (6-35), and (6-37), the radiation intensity of (6-34) reduces to

_ 1 (77 2 0.871
Uy = m(z) [2 B |.8515] o+ ~ (6-50)

which can also be written as

Uy = (6-50a)

Nkd ~— 2Nkd ~ 2 Nkd

The average value of the radiation intensity as given by (6-50a) is 0.554 times that
for the ordinary end-fire array of (6-48b). Thus the directivity can be expressed, using

(6-50a), as
Unex 1 2Nkd | d '
Dy = U 0'554[ = :| = |.805 [4N(A)] (6-51)

which is 1.805 times that of the ordinary end-fire array as given by (6-49). Using
(6-43), (6-51) can also be written as

d L\d
Dy = 1.803 [4N(X)] = 1.805 |:4 (l + E) I] (6-51a)

which for a large array (L = d) reduces to

o] - o1+
1805 [4 (%)] .

871 1
0.871 742_0_554( 'rr)

Dy

t

Example 6.5

Given a linear, end-fire (with improved directivity) Hansen-Woodyard, uniform array
of 10 elements (N = 10) with a separation of A/4 (d = A/4) between the elements,
find the directivity of the array factor. This array is identical to that of Examples 6.3
{broadside) and 6.4 (ordinary end-fire), and it is used for comparison.

SOLUTION
Using (6-51b)

{
Dy = 1.805 [43\’(&)] = 18.05(dimensionless) = 10 log,4(18.05) = 12.56 dB
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The value of this directivity (Dy = 18.05) is 1.805 times greater than that of
Example 6.4 (ordinary end-fire) and 3.578 times greater than that found in Example
6.3 (broadside).

Table 6.7 lists the directivities for broadside, ordinary end-fire, and Hansen-
Woodyard arrays.

6.5 DESIGN PROCEDURE

In the design of any antenna system, the most important design parameters are usually
the number of elements, spacing between the elements, excitation (amplitude and
phase), half-power beamwidth, directivity, and side lobe level. In a design procedure
some of these parameters are specified and the others are then determined.

The parameters that are specified and those that are determined vary among
designs. For a uniform array, other than for the Hansen-Woodyard end-fire. the side
lobe is always approximately —13.5 dB. For the Hansen-Woodyard end-fire array
the side lobe level is somewhat compromised above the —13.5 dB in order to gain
about 1.805 (or 2.56 dB) in directivity. The order in which the other parameters are
specified and determined varies among designs. For each of the uniform linear arrays
that have been discussed, equations and some graphs have been presented which can
be used to determine the half-power beamwidth and directivity, once the number of
elements and spacing (or the total length of the array) are specified. In fact, some of
the equations have been boxed or listed in tables. This may be considered more of an
analysis procedure. The other approach is to specify the half-power beamwidth or
directivity and to determine most of the others. This can be viewed more as a design
approach, and can be accomplished to a large extent with equations or graphs that
have been presented. More exact values can be obtained, if necessary, using iterative
methods.

Example 6.6

Design a uniform linear scanning array whose maximum of the array factor is 30°
from the axis of the array (# = 30°). The desired half-power beamwidth is 2% while
the spacing between the elements is A/4. Determine the excitation of the elements
(amplitude and phase). length of the array (in wavelengths), number of elements, and
directivity (in dB).

SOLUTION

Since the desired design is a uniform linear scanning array, the amplitude excitation
is uniform, However, the progressive phase between the elements is, using (6-21)

4

The length of the array is obtained using an iterative procedure of (6-22) or its
graphical solution of Figure 6.11. Using the graph of Figure 6.11 for a scan angle of
307 and 2° half-power beamwidth, the approximate length plus one spacing (L + d)

B = —kdcos 6, = — %:E (é) cos(30") = —1.36 radians = —77.94°
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Table 6.7 DIRECTIVITIES FOR BROADSIDE AND END-FIRE ARRAYS
Array Directivity

d Nd __[L

: — 2 —] = —_] - = _—

BROADSIDE Dy N(A) 2(| e d)’\ z(A)
NdiA—> 2, 1> d

END-FIRE (4 Nd (L

(ORDINARY) ~ Po=4N (,\) - (] ’ d) . (,\)

ANTdIN— =, L= d

END-FIRE , e .
(HANSEN- Dy = 1805 [4N (—)] — 1805 [4(1 5 E) ~] — 1805 [4 (—)]
WOODYARD) A A A

INTdIA— %, L > d

Il

of the array is 50A. For the 50A length plus one spacing dimension from Figure 6.11
and 30° scan angle, (6-22) leads to a half-power beamwidth of 2.03°, which is very
close to the desired value of 2°, Therefore, the length of the array for a spacing of
M4 is 49.75A.

Since the length of the array is 49.75A and the spacing between the elements is
A4, the total number of elements is

L L+ d 50
——+l—( p )—m—EQO

The directivity of the array is obtained using the radiation intensity and the computer
program DIRECTIVITY at the end of Chapter 2, and it is equal to 100.72 or
20.03 dB.

6.6 N-ELEMENT LINEAR ARRAY:
THREE-DIMENSIONAL CHARACTERISTICS

Up to now, the two-dimensional array factor of an N-element linear array has been
investigated. Although in practice only two-dimensional patterns can be measured, a
collection of them can be used to reconstruct the three-dimensional characteristics of
an array. It would then be instructive to examine the three-dimensional patterns of an
array of elements. Emphasis will be placed on the array factor.

6.6.1 N-Elements Along Z-Axis

A linear array of N isotropic elements are positioned along the z-axis and are separated
by a distance d, as shown in Figure 6.5(a). The amplitude excitation of each element
is a, and there exists a progressive phase excitation 8 between the elements. For far-
field observations, the array factor can be written according to (6-6) as

N N
AF = 2 “"ej(;r—l)(kdcnsy—e—ﬁ] — E“"e,}"{n—ljw (6-52)

n=1 n=1

i = kd cos y + B (6-52a)
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Figure 6.14 Lincar array of N isotropic elements positioned along the r-axis.

where the a,'s are the amplitude excitation coefficients and vy is the angle between
the axis of the array (z-axis) and the radial vector from the origin to the observation
point.

In general, the angle y can be obtained from the dot product of a unit vector
along the axis of the array with a unit vector directed toward the observation point.
For the geometry of Figure 6.5(a)

cosy=4a.+4, = a.-(A,sinfcos d + &, sinflsing + 4.cos ) = cos >y = ¢
(6-53)
Thus (6-52) along with (6-33) is identical to (6-6), because the system of Figure 6.5(a)
possesses 4 symmetry around the z-axis (no ¢ variations). This is not the case when
the elements are placed along any of the other axes, as will be shown next.

6.6.2 N-Elements Along X- or Y-Axis

To demonstrate the facility that a “‘sound™ coordinate system and geometry can
provide in the solution of a problem, let us consider an array of N isotropic elements
along the x-axis, as shown in Figure 6.14. The far-zone array factor for this array is
identical in form to that of Figure 6.5(a) except for the phase factor . For this
geomeltry

cos y= a4, =a,(a,sinfcos P + &, sindsin ¢ + 4.cos #) = sinflcos p
(6-54)

cos y = sin B cos ¢ = y = cos” '(sin # cos ¢) (6-54a)
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The array factor of this array is also given by (6-52) but with y defined by
(6-54a). For this system, the array factor is a function of both angles (# and ¢).

In a similar manner, the array factor for N isotropic elements placed along the
y-axis is that of (6-52) but with v defined by

cos y = &,+4, = sin fsin ¢ = y = cos ™ '(sin Osin ¢) (6-55)

Physically placing the elements along the z-, x-, or y-axis does not change the
characteristics of the array. Numerically they yield identical patterns even though
their mathematical forms are different.

Example 6.7

Two half-wavelength dipole (/ = A/2) are positioned along the x-axis and are separated
by a distance o, as shown in Figure 6.15. The lengths of the dipoles are parallel to
the z-axis. Find the total field of the array. Assume uniform amplitude excitation and
a progressive phase difference of B.

SOLUTION
The field pattern of a single element placed at the origin is given by (4-84) as

cos i cos 6
J!rné,—j&r 2

—Jn 2arr sin @

Ey

Using (6-52), (6-54a), and (6-10c), the array factor can be written as

(AF), = sin(kel sin 6 cos ¢ + B)
" 2 sin[i(kd sin 6 cos ¢ + B)]

The total field of the array is then given, using the pattern multiplication rule of
(6-5), by

1 5
cos|—cos 6
fue_ﬂ"

2 ) [ sin(kd sin 0 cos ¢ + B) ]

E = E - AP)H =J 1

To illustrate the techniques. the three-dimensional patterns of the two-element
drray of Example 6.7 have been sketched in Figures 6.15(a) and (b). For both, the
element separation is A/2 (d = A/2), For the pattern of Figure 6.15(a), the phase
excitation between the elements is identical (8 = 0). In addition to the nulls in the 6
= (° direction, provided by the individual elements of the array, there are additional
nulls along the x-axis (6 = 7/2, ¢ = 0 and ¢ = ) provided by the formation of
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(b) p=+I80"

Figure 6.15 Three-dimensional patterns for two A/2 dipoles spaced A/2. (source: P. Lor-
rain and D. R, Corson, Electromagnetic Fields and Waves, 2nd ed., W. H. Freeman and Co.,
Copyright © 1970).

the array. The 180° phase difference required to form the nulls along the x-axis is a
result of the separation of the elements [kd = 2@/ANN2) = 7).

To form a comparison, the three-dimensional pattern of the same array but with
a 180° phase excitation (8 = 180%) between the elements is sketched in Figure 6.15(b).
The overall pattern of this array is quite different from that shown in Figure 6.15(a).
In addition to the nulls along the z-axis (# = 0°) provided by the individual elements,
there are nulls along the y-axis formed by the 1807 excitation phase difference.
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6.7 RECTANGULAR-TO-POLAR GRAPHICAL
SOLUTION

In antenna theory, many solutions are of the form
J(§) = f(Ccos y + 9) (6-56)

where C and & are constants and vy is a variable. For example, the approximate array
factor of an N-element. uniform amplitude linear array [Equation (6-10d)] is that of
a sin({)/¢ form with

[=Ceosy+ =54 =" (dcos 0+ B) (6-57)

where
¢="kd (6-57a)
5= g B (6-57b)

Usually the f(£) function can be sketched as a function of ¢ in rectilinear coor-
dinates. Since £ in (6-57) has no physical analog, in many instances it is desired that
a graphical representation of |f({)| be obtained as a function of the physically observ-
able angle 6. This can be constructed graphically from the rectilinear graph, and it
forms a polar plot.

The procedure that must be followed in the construction of the polar graph is as
follows:

1. Plot, using rectilinear coordinates, the function [f(£)|.
2. a, Draw a circle with radius € and with its center on the abscissa at { = 6.
b. Draw vertical lines to the abscissa so that they will intersect the circle.
¢. From the center of the circle, draw radial lines through the points on the circle
intersected by the vertical lines.
d. Along the radial lines, mark off corresponding magnitudes from the linear
plot.
e. Connect all points to form a continuous graph.

To better illustrate the procedure, the polar graph of the function

N
sin (E d:) i
o = ————, L= 5—W::()s =22 (6-58)

N sin (12}‘{)

has been constructed in Figure 6.16. The function f(¢) of (6-58) represents the array
factor of a 10-element (N = 10) uniform linear array with a spacing of A/4 (d = A4)
and progressive phase shift of — /4 (8 = — #/4) between the elements. The con-
structed graph can be compared with its exact form shown in Figure 6.10.

From the construction of Figure 6,16, it is evident that the angle at which the
maximum is directed is controlled by the radius of the circle C and the variable 8.
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Figure 6.16 Rectangular-to-polar plot graphical solution.

For the array factor of Figure 6.16, the radius C is a function of the number of
elements (V) and the spacing between the elements (). In turn. 8 is a function of the
number of elements (V) and the progressive phase shift between the elements (8).
Making & = 0 directs the maximum toward § = 90° (broadside array). The part of
the linear graph that is used to construct the polar plot is determined by the radius of
the circle and the relative position of its center along the abscissa. The usable part of
the linear graph is referred to as the visible region and the remaining part as the
invisible region. Only the visible region of the linear graph is related to the physically
observable angle 6 (hence its name).

6.8 N-ELEMENT LINEAR ARRAY:

UNIFORM SPACING, NONUNIFORM AMPLITUDE
The theory to analyze linear arrays with uniform spacing. uniform amplitude, and a
progressive phase between the elements was introduced in the previous sections of
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this chapter. A number of numerical and graphical solutions were used to illustrate
some of the principles. In this section, broadside arrays with uniform spacing but
nonuniform amplitude distribution will be considered. Most of the discussion will be
directed toward binomial [4] and Dolph-Tschebyscheff [5] broadside arrays (also
spelled Tchebyscheff or Chebyshev).

Of the three distributions (uniform, binomial, and Tschebyscheff), a uniform
amplitude array yields the smallest half-power beamwidth. Tt is followed, in order, by
the Dolph-Tschebyscheff and binomial arrays. In contrast. binomial arrays usually
possess the smallest side lobes [ollowed, in order, by the Dolph-Tschebyscheff and
uniform arrays. As a matter of fact. binomial arrays with element spacing equal or
less than A/2 have no side lobes. It is apparent that the designer must compromise
between side lobe level and beamwidth.

A criterion that can be used to judge the relative beamwidth and side lobe level
of one design to another is the amplitude distribution (tapering) along the source. It
has been shown analytically that for a given side lobe level the Dolph-Tschebyscheff
array produces the smallest beamwidth between the first nulls. Conversely, for a given
beamwidth between the first nulls, the Dolph-Tschebyscheff design leads to the small-
est possible side lobe level.

Uniform arrays usually possess the largest directivity. However, superdirective
(or super gain as most people call them) antennas possess directivities higher than
those of a uniform array [6]. Although a certain amount of superdirectivity is practi-
cally possible, superdirective arrays require very large currents with opposite phases
between adjacent elements. Thus the net total current and efficiency of each array are
very small compared to the corresponding values of an individual element.

Before introducing design methods for specific nonuniform amplitude distribu-
tions, let us first derive the array factor.

6.8.1 Array Factor

An array of an even number of isotropic elements 2M (where M is an integer) is
positioned symmetrically along the z-axis, as shown in Figure 6.17(a). The separation
between the elements is d. and M elements are placed on each side of the origin.
Assuming that the amplitude excitation is symmetrical about the origin. the array
factor for a nonuniform amplitude broadside array can be written as

[AF}:M £ ale+j(1.f-J£dCUhl‘l = aze-ljﬂﬂjkdl.usﬂ =T,
i e F2M ~ L2 kdcas &
Me
4 aie—_j'i',lfihkrfcnsﬁ - aze—ﬂﬁﬂikdcmﬂ e o
TR awe—szM« 102 ) kel cos 6
M
n—1
(AP = 2 E a, Cos l:? kd cos 6 (6-59)
n=1

which in normalized form reduces to

n=1

X (2n — 1)
(AE)»y = Z a, Cos [f kd cos B] (6-39a)

where a,'s are the excitation coefficients of the array elements.
If the total number of isotropic elements of the array is odd 2M -+ | (where M
1§ an integer), as shown in Figure 6.17(b), the array factor can be written as
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(AF)EM-FI = zal 4 age-i-_jkdu!ﬁﬂ | aaejlkkfcﬁsﬂ g aM_l‘IejMMcogy
e ag({‘j{'u’msﬁ g a_‘e—ﬁkrfcc:sﬂ + o+ Bk e—.p"MdeDSE
M1
(AF)spp4q = 2 2 a, cos{(n — 1) kd cos (6-60)
n=1
which in normalized form reduces to
M+
(AF)ypqy = E a, cos[(n — 1) kd cos 0] (6-60a)
1

Hn=

The amplitude excitation of the center element is 2.
Equations (6-59a) and (6-60a) can be written as

w
(AF)ay (even) = >, a, cos[(2n — 1)u] (6-61a)
n=1
Ml
(AF)y 1 (0dd) = X a, cos[2(n — Du] (6-61h)
n=1
where
_md i (6-61c)
u = —-cos

The next step will be 1o determine the values of the excitation coefficients (a,’s).

6.8.2 Binomial Array

The array factor for the binomial array is represented by (6-61a)-(6-61¢) where the
a,’s are the excitation coefficients which will now be derived.

A. Excitation Coefficients
To determine the excitation coefficients of a binomial array, J. S. Stone [4] suggested
that the function (1 + x)" ! be written in a series, using the binomial expansion. as
{m— 1)m — 2) ;
21 ¥
m— 1m — 2)(m — 3
. ( - ) ]xﬁ

The positive coefficients of the series expansion for different values of m are

(1+x""=1+@(m— lyx +

% o (6-62)

n =1 ]

m= 2 1 |

m =3 | 2 |

m =4 1 3 3 1

m=5 1 4 6 4 |

mls & I 5 10 10 5 1 (6:63)
m=7 l 6 15 20 15 6 1

m=8 | 3 21 35 35 21 7T 1

m=29 ] 8 28 56 70 56 28 8 1

ni= 10 1 9 36 84 126 126 84 36 9 ]
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Figure 6.17 Nonuniform amplitude arrays of even and odd number of elements.

The above represents Pascal’s triangle. If the values of m are used to represent the
number of elements of the array, then the coefficients of the expansion represent the
relative amplitudes of the elements. Since the coefficients are determined from a
binomial series expansion, the array is known as a binomial array.

Referring to (6-61a), (6-61b), and (6-63), the amplitude coefficients for the fol-
lowing arrays are:

1. Two elements (2M = 2)
a, = 1

2. Three elements (2M + | = 3)
2ay =2=a =1
a; = 1

3. Four elements (2M = 4)

a =3
1

If

28]
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4, Fiveelements (2M + 1 = 5)

20 = 6=q =3
a» = 4
a; = |

The coefficients for other arrays can be determined in a similar manner.

B. Design Procedure

One of the objectives of any method is its use in a design. For the binomial method,
as for any other nonuniform array method, one of the requirements is the amplitude
excitation coefficients for a given number of elements. This can be accomplished
using either (6-62) or the Pascal triangle of (6-63) or extensions of it. Other figures
of merit are the directivity, half-power beamwidth and side lobe level. It already has
been stated that the binomial arrays do not exhibit any minor lobes provided the
spacing between the elements is equal or less than one-half of a wavelength. Unfor-
tunately, closed form expressions for the directivity and half-power beamwidth for
binomial arrays of any spacing between the elements are not available. However,
because the design using a A/2 spacing leads to a pattern with no minor lobes,
approximate closed form expressions for the half-power beamwidth and maximum
directivity for the d = A/2 spacing only have been derived [7] in terms of the numbers
of elements or the length of the array, and they are given, respectively. by

HPBW (d = A2) L06 186 e (6-64)
( - — — — -
VN =1 \/ 2LIA \/LIA ?
2
Dy = (6-63)
G - 2AN—1)
J‘ [cns(— cos B)] sin @ df
0 2
2N — 2)2N —-4)---2
Dy =" X } (6-65a)

TN -3)2N —5)---1

Dy = L7I\/N = 1.77\/1 + 2L/A (6-65b)

These expressions can be used effectively to design binomial arrays with a desired
half-power beamwidth or directivity. The value of the directivity as obtained using
(6-65) to (6-65b) can be compared with the value using the array factor and the
computer program DIRECTIVITY at the end of Chapter 2.

To illustrate the method, the patterns of a 10-element binomial array (2M = 10)
with spacings between the elements of A/4, A/2, 3A/4, and A, respectively. have been
plotted in Figure 6.18. The patterns are plotted using (6-61a) and (6-61c¢) with the
coefficients of @, = 126, a; = 84, ay = 36,4y = 9, and a5 = 1. It is observed that
there are no minor lobes for the arrays with spacings ol A/4 and A/2 between the
elements. While binomial arrays have very low level minor lobes, they exhibit larger
beamwidths (compared to uniform and Dolph-Tschebyscheff designs). A major prac-
tical disadvantage of binomial arrays is the wide variations between the amplitudes
of the different elements of an array. especially for an array with a large number of
elements. This leads to very low efficiencies, and it makes the method not very
desirable in practice. For example, the relative amplitude coefficient of the end ele-
ments of a 10-element array is | while that of the center element is 126. Practically,
it would be difficult to obtain and maintain such large amplitude variations among
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=%

Figure 6.18 Array lactor power patterns for a 10-element broadside hinomial
array with N = 10 and o = A4, A/2, 3A/4, and A

the elements. They would also lead to very inefficient antennas. Because the magni-
tude distribution is monotonically decreasing from the center toward the edges and
the magnitude of the extreme elements is negligible compared to those toward the
center, a very low side lobe level is expected.

Example 6.8

For a 10-element binomial array with a spacing of A/2 between the elements, whose
amplitude pattern is displayed in Figure 6.18, determine the half-power beamwidth
(in degrees) and the maximum directivity (in dB). Compare the answers with other
available data. '
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SOLUTION

Using (6-64), the half-power beamwidth is equal to
1.06 1.06

N EE

The value obtained using the array factor. whose pattern is shown in Figure 6.18, is

20.5° which compares well with approximate value.
Using (6-65a), the value of the directivity is equal for N = 10

D, = 5.392 = 7.32 dB
while the value obtained using (6-65b) is
Dy = 1.777/10 = 5.597 = 7.48 dB

The value obtained using the array factor and the computer program DIRECTIVITY
is Dy = 5.392 = 7.32 dB. These values compare favorably with each other.

HPBW =

= ().353 radians = 20.23°

6.8.3 Dolph-Tschebyscheff Array

Another array, with many practical applications, is the Dolph-Tschebyscheff array.
The method was originally introduced by Dolph [5] and investigated afterward by
others [8]-[11]. It is primarily a compromise between uniform and binomial arrays.
Its excitation coefficients are related to Tschebyscheff polynomials. A Dolph-
Tschebyscheff array with no side lobes (or side lobes of —oc dB) reduces to the
binomial design. The excitation coefficients for this case, as obtained by both methods,
would be identical.

A. Array Factor

Referring to (6-61a) and (6-61b). the array factor of an array of even or odd number
of elements with symmetric amplitude excitation is nothing more than a summation
of M or M + 1 cosine terms. The largest harmonic of the cosine terms is one less
than the total number of elements of the array. Each cosine term, whose argument is
an integer times a fundamental frequency, can be rewritien as a series of cosine
tunctions with the fundamental frequency as the argument. That is,

m =0 costmu) = 1

m = 1 cos(mu) = cos u

m =2 cos(mu) = cos(Qu) = 2cos”u — 1

m =3 cos(mu) = cos(3u) = 4 cos’ u — 3 cos u

m =4 cos(mu) = cos(4u) = 8cos*u — 8cos’u + 1

m=35 cos(mu) = cos(Su) = 16 cos® u — 20 cos* u + 5 cos u (6-66)

m =6 cos(mu) = cos(bu) = 32 cos® u — 48 cos* u + 18 cos®u — 1

m =T cos(mu) = cos(7u) = 64 cos’ u — 112 cos” u + 56 cos® u — 7 cos u

m =8 cos(mu) = cos(8u) = 128 cos® u — 256 cos® u + 160 cos” u
—32cos’u + 1

m =9 cos(nu) = cos(9u) = 256 cos’ u — 576 cos’ u + 432 cos’ u

— 120 cos* u + 9 cos u




6.8 N-Element Linear Array: Uniform Spacing, Nonuniform Amplitude 295

The above are obtained by the use of Euler’s formula

[e"M]" = (cos u + jsin )" = ™ = cos(mu) + j sin(mu) (6-67)

and the trigonometric identity sin® u = 1 — cos” u,
If we let
Z = COS U (6-68)

(6-66) can be wrilten as
m =0 cos(mu) = 1 = Ty(z)
m=1 cos(mu) =z = T/(z)
m=72 cos(mu) =2z° — 1 = Tu(z)
m=3 cos(mu) = 4z°> — 3z = Ta(@)
m=4 cos(tmu) = 8z" — 8z + 1 = Ty(z)
m =15 cos(mu) = 167° — 202° + 5z = Ts(2) (6-69)
m=06 cosimu) = 32z° — 48z% + 1827 — 1 = Ti(2)
m =7 cos(mu) = 642'T — 1122° + 562° — Tz = T?{z)
m=8 cos(mu) = 128z% — 256z% + 160z — 322 + 1 = T2
m=9 cos(mu) = 256z° — 57677 + 432z% — 120z + 9z = Ty(2)

and each is related to a Tschebyscheff (Chebyshev) polynomial 7}, (z). These relations
between the cosine functions and the Tschebyscheff polynomials are valid only in the
—1 =z = + | range. Because |cos(mu)| = 1, each Tschebyscheff polynomial is
|T,(z) = 1 for =1 = z = + 1. For |z]| > 1, the Tschebyscheff polynomials are
related to the hyperbolic cosine functions.

The recursion formula for Tschebyscheff polynomials is

| Tul2) = 22T01(2) = T (@) (6-70)

It can be used to find one Tschebyscheft polynomial if the polynomials of the previous
two orders are known. Each polynomial can also be computed using

T,(z) = cos[m cos™'(2)] —l=z=+1 (6-71a)
7,(z) = cosh[m cosh™'(z)]+ < —1,z2> + 1 (6-71b)

In Figure 6.19 the first six Tschebyscheff polynomials have been plotted. The follow-
ing properties of the polynomials are of interest:

1. All polynomials, of any order. pass through the point (1, 1).
2. Within the range — | = z = |, the polynomials have values within —1 to + 1.

3. All roots occur within —1 = z = [, and all maxima and minima have values of
+ 1 and — 1, respectively.

Since the array lactor of an even or odd number of elements is a summation of
cosine terms whose form is the same as the Tschebyscheff polynomials, the unknown
coefficients of the array factor can be determined by equating the series representing

fr = cosh™'(y) = Inly = (¥ — )"
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Figure 6.19 Tschebyscheff polynomials of orders zero through five.

the cosine terms of the array factor to the appropriate Tschebyscheff polynomial. The
order of the polynomial should be one less than the total number of elements of the
array.

The design procedure will be outlined first, and it will be illustrated with an
example. In outlining the procedure, it will be assumed that the number of elements,
spacing between the elements. and ratio of major-to-minor lobe intensity (Ry) are
known. The requirements will be to determine the excitation coefficients and the array
factor of a Dolph-Tschebyscheff array.

B. Array Design

Statement. Design a broadside Dolph-Tschebyscheff array of 2M or 2M + 1 elements
with spacing d between the elements. The side lobes are R, dB below the maximum
of the major lobe. Find the excitation coefficients and form the array factor.
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Procedure

a. Select the appropriate array factor as given by (6-61a) or (6-61b).

b. Expand the array factor. Replace each cos(mu) function (m = 0, 1,2, 3, ...) by
its appropriate series expansion found in (6-66).

¢. Determine the point z = g, such that 7,,(zg) = Ry (voltage ratio). The order m
of the Tschebvscheff polynomial is always one less than the toral number of
elements. The design procedure requires that the Tschebyscheff polynomial in
the —1 = z = z;, where z; is the null nearest to z = -+ 1, be used (o represent
the minor lobes of the array. The major lobe of the pattern is formed from the
remaining part of the polynomial up to point z, (z; < z = z9).

d. Substitute

=

cos(u) = — (6-72)
20

in the array factor of step 2. The cos(u) is replaced by z/zy, and not by z, so that
(6-72) would be valid for |z| = |z|. At |z] = |z, (6-72) attains its maximum
value of unity.

e. Hquate the array factor from step 2, after substitution of (6-72), to a T,,(z) from
(6-09). The T,,(z) chosen should be of order m where m is an integer equal to one
less than the total number of elements of the designed array. This will allow the
determination of the excitation coefficients a,,’s.

f.  Write the array factor of (6-61a) or (6-61b) using the coefficients found in step 5.

Example 6.9

Design a broadside Dolph-Tschebyscheff array of 10 elements with spacing d between
the elements and with a major-to-minor lobe ratio of 26 dB. Find the excitation
coefficients and form the array factor.

SOLUTION
1. The array factor is given by (6-61a) and (6-61c). That is,
M=5
(AR)ay = acos[(2n — 1]
1

=

u::%cosﬂ

2. When expanded. the array factor can be written as
(AF)io = a, cos(u) + as cos (3u)
+ as cos(5u) + ay cos(Tu) + as cos(9u)
Replace cos(u), cos(3u). cos(5u), cos(7u), and cos(Yu) by their series expansions
found in (6-66).
3. Ry (dB) = 26 = 20 logy(Ry) or Ry (voltage ratio) = 20. Determine z; by
equating Ry to To(zy). Thus

Ry = 20 = Ty(zp) = cosh[9 cosh™'(zy)]
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Figure 6.20 Tschebyschefl polynomial of order nine (a) amplitude (b) magnitude.

or
20 = cosh[} cosh™'(20)] = 1.0851

Another equation which can. in general, be used to find z; and does not require
hyperbolic functions is [8]

e e
L = %[(Rn + VR - 1) + (Ro — /Ry — I) :| (6-73)

where P is an integer equal to one less than the number of array elements (in this
case P = 9). Ry = Hy/H, and z; are identified in Figure 6.20.
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4. Substitute

cos) = - = 10851

in the array factor found in step 2.
Equate the array factor of step 2, after the substitution from step 4, to 75(z). The
polynomial 7y(z) is shown plotted in Figure 6.20. Thus
(AF)y =  zllay — 3ay + Say — Tag + 9as)zq)
+ 2'(d4ay — 20a; + 56a, — 120as)/zy’]
+ 2[(16az — 112ay + 432as)/z,°]
+ Z'[(64ay — 576as)lz)]
+ 2’1(256as)/zy’]
=9z — 120z* + 43277 — 5767" + 2567°

Matching similar terms allows the determination of the a,’s. That is,

bl

256ads" = 236 ™ g5 = 2.0860
(64a; — 576as)zy’ = —576 = ay = 2.8308
(16ay — 112as + 432a5)lz° = 432 =a; = 4.1184

(da, — 20ay + 56a; — 120as)zs® = —120 = g, = 5.2073
(a1 o 36&‘3 o Sﬂ_q it ?(14 -+ 9{15_})"3” =9 = ) = 5.8377

In normalized form, the a, coefficients can be written as

as = 1 as = 0.357
a, = 1357 ay = 0.485
ay = 1.974 or as; = 0.706
a, = 2.496 a» = 0.890
a; = 2.798 a = |

The first (left) set is normalized with respect to the amplitude of the elements at
the edge while the other (right) is normalized with respect to the amplitude of the
center element.

6. Using the first (left) set of normalized coefficients, the array factor can be written
as

(AF))y, = 2.798 cos(ut) + 2.496 cos(3u) + 1,974 cos(Su)
+ 1.357 cos(7u) + cos(9u)

where u = [(7d/A) cos 0],

The array factor patterns of Example 6.9 for d = M4 and A/2 are shown plotted
in Figure 6.21. Since the spacing is less than A(d < A), maxima exist only at broadside
(0 = 90°). However when the spacing is equal to A(d = A), two more maxima appear
(one toward # = 0° and the other toward ¢ = 180°). For d = A the array has four
maxima, and it acts as an end-fire as well as a broadside array.
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Figure 6.21 Array factor power pattern of a 10-element broadside Dolph-
Tschebyscheff array.

To better illustrate how the pattern of a Dolph-Tschebyscheff array is formed
from the Tschebyscheff polynomial, let us again consider the 10-element array whose
corresponding Tschebyscheff polynomial is of order 9 and is shown plotted in Figure
6.20. The abscissa of Figure 6.20, in terms of the spacing between the elements (d)
and the angle 6, is given by (6-72) or

Z = ZpCOS U = Zy COos (1? cos 9) = 1.0851 cos (—7? cos 9) (6-74)

For d = M4, A2, 3A/4, and A the values of z for angles from 6 = 0° to 90° to
1807 are shown tabulated in Table 6.8. Referring to Table 6.8 and Figure 6.20, it is
interesting to discuss the pattern formation for the different spacings.

1. d=ML,N=10,R; =20
At 6 = 0° the value of z is equal to 0.7673 (point A). As # attains larger values,
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Table 6.8 VALUES OF THE ABSCISSA z AS A FUNCTION OF ¢ FOR A
10-ELEMENT DOLPH-TSCHEBYSCHEFF ARRAY WITH R, = 20

d= A4 d= M2 d = 3\4 d= A
0 2 (Eq. 6-74) 2 (Eq. 6-74) 2(Eq. 6-74) z (Eq. 6-74)
o 07673 0.0 —(.7673 — 10854
10° 0.7764 0.0259 —0.7394 ~ 1.0839
20° 0.8028 0.1026 —0.6509 ~ 1.0657
30° 0.8436 0.2267 ~0.4912 —0.9904
40° 0.8945 0.3899 ~0.2518 ~0.8049
50° 0.9497 0.5774 0.0610 —0.4706
60° 1.0025 0.7673 0.4153 0.0 -
70° 1.0462 09323 0.7514 05167
80° 1.0750 1.0450 0.9956 0.9276
90° 1.0851 10851 1085 1.0851
100° 1.0750 1.0450 0.9956 0.9276
110° 1.0462 09323 0.7514 0.5167
120° 1.0025 0.7673 0.4153 0.0
130° 0.9497 0.5774 0.0610 ~0.4706
140° 0.8945 0.3899 ~0.2518 —0.8049
150° 0.8436 0.2267 —0.4912 ~0.9904
160° 0.8028 0.1026 —0.6509 ~ 1.0657
170° 0.7764 0.0259 —0.7394 ~ 1.0839
180° 0.7673 0.0 —0.7673 ~ 1.0851

z increases until it reaches its maximum value of 1.0851 for # = 90°. Beyond 90°, 3
beging to decrease and reaches its original value of 0.7673 for § = 180°, Thus for d
= A4, only the Tschebyschell polynomial between the values 0.7673 = z = 1,0851
(A = z = zy) 1s used o form the pattern ol the array factor.

2. d = M2.N = ]0, R[] = 20

At # = 07 the value of z is equal to 0 (point B). As ¢ becomes larger, z increases
until it reaches its maximum value of 1.0851 for # = 90°, Beyond 90° z decreases
and comes back to the original point for @ = 180°. For d = A/2, a larger part of the
Tschebyscheff polynomial is used (0 = : = 1.0851; B = z =< z,).

3. d=3N4N=10,R, = 20

For this spacing, the value of z for 6 = 07 is —0.7673 (poimt €), and it increases
as A becomes larger. It attains its maximum value of 1.0851 at 6 = 90°. Beyond 90°.
it traces back to its original value (—0.7673 =z = z,: C =z = g).

4. d=AN=10,R, = 20

As the spacing increases. a larger portion of the Tschebyscheft polynomial is
used to form the pattern of the array factor, When d = A, the value of 2 for @ = Q°
is equal to — 1.0851 (point D) which in magnitude is equal to the maximum value of
z. As 6 attains values larger than 0°, z increases until it reaches its maximum value of
L0851 for 0 = 90° At that point the polynomial (and thus the array factor) again
reaches its maximum value. Beyond @ = 90° z and in turn the polynomial and array
factor retrace their values (— 1.O851 =z = +1.0851: D = z = 7). Ford = A there
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are four maxima. and a broadside and an end-fire array have been formed simul-
taneously.

It is often desired in some Dolph-Tschebyscheff designs to take advantage of the
largest possible spacing between the elements while maintaining the same level of all
minor lobes, including the one toward 6§ = 0 and 180" In general, as well as in
Example 6.8. the only minor lobe that can exceed the level of the others, when the
spacing exceeds a certain maximum spacing between the elements, is the one toward
end-fire (8 = 0% or 180° or z = — 1 in Figure 6.19 or Figure 6.20). The maximum
spacing which can be used while meeting the requirements is obtained using (6-72)
or

l
7 = zpcos(u) = 25 cos (W—; Cos B) (6-75)
The requirement not 1o introduce a minor lobe with a level exceeding the others is
accomplished by utilizing the Tschebyscheff polynomial up to, but not going beyond
z = — 1. Therefore. for 8 = 0° or 180°

dﬁlﬁx
—1 =z cos (W——) (6-76)
A
or
o = 2 cos ! (— l) (6-76a)
™ 0

The excitation coefficients of a Dolph-Tschebyscheff array can be derived using
various documented techniques [9]-[11] and others. One method, whose results are
suitable for computer caleulations, is that by Barbiere [9]. The coefficients using this
method can be obtained using

i (— “M-q(ﬁ}]:q_l (g i Z}T(ZM == 'y

q=n (g — mlilg +n — HIM — g)! (6-772)
for even 2 M elements
n=12...M

a, =
M+ ;
S, (~ tpo-eriggpe- @+ M- DO
a= ' €lg —mlg +n— )M — g + 1)!
forodd 2M + | elements
n=12,,..M+ 1
(6-77b)

2o =1
1 n#l

where €, = {

C. Beamwidth and Directivity

For large Dolph-Tschebyscheff arrays scanned not too close to end-fire and with side
fobes in the range from — 20 to —60 dB, the hatf-power beamwidth and directivity
can be found by introducing a beam broadening factor given approximately by [2]
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2 ; 4 _
=1 + 0.636 {R—cosh [V(cosh“' Roy* — 'rr{|} (6-78)
)

¢

where Ry, is the major-to-side lobe voltage ratio. The beam broadening factor is plotted
in Figure 6.22(a) as a function of side lobe level (in dB).
The half-power beamwidth of a Dolph-Tschebyscheff array can be determined

1. calculating the beamwidth of a uniform array (of the same number of elements
and spacing) using (6-22a) or reading it off Figure 6.11

2. multiplying the beamwidth of part (1) by the appropriate beam broadening factor
f computed using (6-78) or reading it off Figure 6.22(a)

The same procedure can be used to determine the beamwidth of arrays with a cosine-
on-pedestal distribution [2].
The beam broadening factor f can also be used to determine the directivity of large
Dolph-Tschebyscheff arrays. scanned near broadside, with side lobes in the —20 to
—60 dB range [2]. That is,

2R,
Du — 4]

) (6-79)
L+ Ry — F

(L + d)

which is shown plotted in Figure 6.22(b) as a function of L + d (in wavelengths).
From the data in Figure 6.22(b) it can be concluded that:

L. The directivity of a Dolph-Tschebyscheff array, with a given side lobe level,
increases as the array size or number of elements increases.

2. Fora given array length, or a given number of elements in the array, the directivity
does not necessarily increase as the side lobe level decreases. As a matter of fact,
a — 15 dB side lobe array has smaller directivity than a — 20 dB side lobe array.
This may not be the case for all other side lobe levels.

The beamwidth and the directivity of an array depend linearly. but not necessarily
at the same rate, on the overall length or total number of elements of the array.
Therefore, the beamwidth and directivity must be related to each other. For a uniform
broadside array this relation is [2]

101.5
04

D(] — (6-80}

where O, is the 3-dB beamwidth (in degrees). The above relation can be used as a
good approximation betwen beamwidth and directivity for most linear broadside
arrays with practical distributions (including the Dolph-Tschebyscheff array). Equa-
tion (6-80) states that for a linear broadside array the product of the 3-dB beamwidth
and the directivity is approximately equal to 100. This is analogous to the product of
the gain and bandwidth for electronic amplifiers.
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D. Design

The design of a Dolph-Tschebyscheff array is very similar to those of other methods.
Usually a certain number of parameters is specified, and the remaining are obtained
following a certain procedure. In this section we will outline an alternate method that
can be used, in addition to the one outlined and followed in Example 6.9, to design
a Dolph-Tschebyscheff array. This method leads to the excitation coefficients more
directly,

Specify
a. The side lobe level (in dB).
b. The number of elements.

Design Procedure
a. Transform the side lobe level from decibels to a voltage ratio using

Ro(Voltage Ratio) = [Ry(VR)] = 10RB20 (6-81)

b. Calculate P, which also represents the order of the Tschebyscheff polynomial,
using

P = number of elements — |

¢. Determine z using (6-73) or
|
zy = cosh [—}; cosh 1(R(,(VR))] (6-82)

d. Calculate the excitation coefficients using (6-77a) or (6-77b).
e. Determine the beam broadening factor using (6-78).

f.  Calculate the half-power beamwidth of a uniform array with the same number of
elements and spacing between them.

g Find the half-power beamwidth of the Tschebyscheff array by multiplying the
half-power beamwidth of the uniform array by the beam broadening factor.

h. The maximum spacing between the elements should not exceed that of (6-76a).

i.  Determine the directivity using (6-79).

j+  The number of complete minor lobes for the three-dimensional pattern on either
side of the main maximum, using the maximum permissible spacing, is equal to
N-—-1L

k. Calculate the array factor using (6-61a) or (6-61b).

This procedure leads to the same results as any other.

Example 6.10

Caleulate the half-power beamwidth and the directivity for the Dolph-Tschebyscheff
array of Example 6.9 for a spacing ol A/2 between the elements.

SOLUTION
From Example 6.9,
Ry = 26dB ™ R, = 20 (voltage ratio)
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Using (6-78) or Figure 6.22(a), the beam broadening factor f is equal to
f= 1079

According to (6-22a) or Figure 6.11. the beamwidth of a uniform broadside array
with L + d = 5A is equal to

0, = 10.17°

Thus the beamwidth of a Dolph-Tschebyscheff array is equal to
0, = 10.17°f = 10.17°(1.079) = 10.97°
The directivity can be obtained using (6-79), and it is equal to

2(20)°
Dy = (&0} = 9.18(dimensionless) = 9.63 dB

3 1.079
] - [0 = T[=—

which closely agrees with the results of Figure 6.22(b).

6.9 SUPERDIRECTIVITY

Antennas whose directivities are much larger than the directivity of a reference antenna
of the same size are known as superdirective antennas. Thus a superdirective array is
one whose directivity is larger than that of a reference array (usually a uniform array
of the same length). In an array. superdirectivity is accomplished by inserting more
elements within a fixed length (decreasing the spacing). Doing this, leads eventually
to very large magnitudes and rapid changes of phase in the excitation coefficients of
the elements of the array. Thus adjacent elements have very large and oppositely
directed currents. This necessitates a very precise adjustment of their values, Asso-
ciated with this are increases in reactive power (relative to the radiated power) and
the @ of the array.

6.9.1 Efficiency and Directivity

Because of the very large currents in the elements of superdirective arrays, the ohmic
[osses increase and the antenna efficiency decreases very sharply. Although practically
the ohmic losses can be reduced by the use of superconductive materials, there is no
easy solution for the precise adjustment of the amplitudes and phases of the array
elements. High radiation efficiency superdirective arrays can be designed utilizing
array functions that are insensitive to changes in element values [12].

In practice, superdirective arrays are usually called supergain. However, super-
gain is a misnomer because such antennas have actual overall gains (because of very
low efficiencies) less than uniform arrays of the same length. Although significant
superdirectivity is very difficult and usually very impractical, a moderate amount can
be accomplished. Superdirective antennas are very intriguing, and they have received
much attention in the literature.

The length of the array is usually the limiting factor to the directivity of an array.
Schelkunoff [13] pointed out that theoretically very high directivities can be obtained
from linear end-fire arrays. Bowkamp and de Bruijn [14], however, concluded that
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theoretically there is no limit in the directivity of a linear antenna. More specifically,
Riblet [8] showed that Dolph-Tschebyscheff arrays with element spacing less than
A/2 can yield any desired directivity. A numerical example of a Dolph-Tschebyscheff
array of nine elements, A/32 spacing between the elements (total length of A/4), and
a 1/19.5 (—25.8 dB) side lobe level was carried out by Yaru [6]. Tt was found that to
produce a directivity of 8.5 times greater than that of a single element. the currents
on the individual elements must be on the order of 14 X 10° amperes and their values
adjusted to an accuracy of better than one part in 10", The maximum radiation
intensity produced by such an array is equivalent to that of a single element with a
current of only 19.5 % 10~ * amperes. If the elements of such an array are l-cm
diameter. copper, A/2 dipoles operating at 10 MHz, the efficiency of the array is less
than 10~ "%,

6.9.2 Designs With Constraints

To make the designs more practical. applications that warrant some superdirectivity
should incorporate constraints, One constraint is based on the sensitivity factor, and
it was utilized for the design of superdirective arrays [15]. The sensitivity factor
(designated as K) is an important parameter which is related to the electrical and
mechanical tolerances of an antenna, and it can be used to describe its performance
(especially its practical implementation). For an V-element array, such as that shown
in Figure 6.5(a), it can be written as [15]

N
> la,)?
=]

R T (6-83)

2 a”g_..i‘kfrly

n=1

where ¢, is the current excitation of the nth element, and #), is the distance from the
nth element to the far-field observation point (in the direction of maximuwm radiation).

In practice, the excitation coefficients and the positioning of the elements, which
result in a desired pattern, cannot be achieved as specified. A certain amount of error,
both electrical and mechanical, will always be present. Therefore the desired pattern
will not be realized exactly, as required. However, if the design is accomplished based
on specified constraints, the realized pattern will approximate the desired one within
a specified deviation,

To derive design constraints, the realized current excitation coefficients ¢,’s are
related to the desired ones a,’s by

Cﬂ' = aﬂ + aﬂ'aﬂ = aﬂ(l + a!l) (6-83&')
where a,a, represents the error in the nth excitation coefficient. The mean square
value of «, is denoted by

€ = (|}’ (6-83b)

To take into account the error associated with the positioning of the elements, we
introduce

(ko)

52
o 3

(6-83¢)
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where  is the root-mean-square value of the element position error. Combining
(6-83b) and (6-83¢) reduces to

A = g + & (6-83d)
where A 18 a measure ol the combined electrical and mechanical errors,
For uncorrelated errors [15]
average radiation intensity of realized pattern

KA® = 3 e : :
maximum radiation intensity of desired pattern

If the realized pattern is to be very close to the desired one. then

5 | i
KA | AC—= (6-83e)

V&

Equation (6-83e) can be rewritten. by introducing a safety factor S, as

A= e (6-831)

/3K

S is chosen large enough so that (6-83e) is satisfied. When A is multiplied by 100,
100A represents the percent tolerance for combined electrical and mechanical errors.

The choice of the value of S depends largely on the required accuracy between
the desired and realized patterns. For example. if the focus is primarily on the reali-
zation of the main beam, a value of § = 10 will probably be satisfactory. For side
lobes of 20 dB down. § should be about 1.000. In general, an approximate value of
S should be chosen according to

5= 10 x 1g%™ (6-83g)

where b represents the pattern level (in dB down) whose shape is to be accurately
realized.

The above method can be used to design, with the safety factor K constrained to
a certain value, arrays with maximum directivity. Usually one first plots, for each
selected excitation distribution and positioning of the elements, the directivity D of
the array under investigation versus the corresponding sensitivity factor K (using
6-83) of the same array. The design usually begins with the excitation and positioning
of a uniform array (i.e., uniform amplitudes, a progressive phase, and equally spaced
elements), The directivity associated with it is designated as Dy, while the correspond-
ing sensitivity factor. computed using (6-83), is equal to K, = 1/N.

As the design deviates from that of the uniform array and becomes superdirective,
the values of the directivity increase monotonically with increases in K. Eventually a
maximurt directivity [s attained (designated as Dy, ) and it corresponds to a K =
Koues beyond that point (K > K. ). the directivity decreases monotonically. The
antenna designer should then select the design for which Dy < D < D, and K, =
IfN < K < KTFIN.X'

The value of D is chosen subject to the constraint that K is a certain number
whose corresponding tolerance error A of (6-83f), for the desired safety factor S. can
be achieved practically. Tolerance errors of less than about 0.3 percent are usually
not achievable in practice. In general, the designer must trade-off between directivity
and sensitivity factor: larger D's (provided D = D, ) result in larger K's (K =
K)o and vice-versa.
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A number of constrained designs can be found in [15]. For example, an array of
cylindrical monopoles above an infinite and perfectly conducting ground plane was
designed for optimum directivity at f = 30 MHz, with a constraint on the sensitivity
factor. The spacing d between the elements was maintained uniform.

For a four-element array, it was found that for d = 0.3A the maximum directivity
was 14.5 dB and occurred at a sensitivity factor of K = 1. However for d = 0.1A
the maximum directivity was up to 15.8 dB, with the corresponding sensitivity factor
up to about 10°. At Ky = 1/N = 1/4, the directivities for ¢ = 0.3A and 0.1\ were
about 11,3 and 8 dB, respectively. When the sensitivity factor was maintained constant
and equal to K = 1, the directivity for d = 0.3A was 14.5 dB and only 11.6 dB for
d = 0.1A. It should be noted that the directivity of a single monopole above an infinite
ground plane is twice that of the corresponding dipole in free-space and equal to about
3.25 (or about 5.1 dB).

6.10 PLANAR ARRAY

In addition to placing elements along a line (to form a linear array), individual radiators
can be positioned along a rectangular grid to form a rectangular or planar array. Planar
arrays provide additional variables which can be used to control and shape the pattern
of the array, Planar arrays are more versatile and can provide more symmetrical
patterns with lower side lobes. In addition, they can be used to scan the main beam
of the antenna toward any point in space. Applications include tracking radar, search
radar, remote sensing, communications, and many others.

6.10.1 Array Factor

To derive the array factor for a planar array, let us refer to Figure 6.23. If M elements
are initially placed along the x-axis, as shown in Figure 6.23(a), the array factor of it
can be written according to (6-52) and (6-54) as

M
AF = 2 Imlej(m-l}(kd,sin&cm¢+ﬁ,} (6-84)
J’N=1

where /,,, is the excitation coefficient of each element. The spacing and progressive
phase shift between the elements along the x-axis are represented, respectively, by d,
and B,. If N such arrays are placed next to each other in the y-direction, a distance d,
apart and with a progressive phase f3,, a rectangular array will be formed as shown
in Figure 6.23(b). The array factor for the entire planar array can be written as

N M
AF = 2, L, [ 2 I,,“ei(m—IJfM.aiﬂﬂC.t‘N'N‘ﬁ.J] el n=ikd,sintsind+ £) (6-84a)
n=1 m= 1
or
AF= S5y, (6-85)

where

M
S.\'m = E jmlejfm—l}fkd,csim‘?l:uaqb-l-ﬁ‘l (6-85{1)

m=1
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Figure 6.23 Linear and planar array geometries,

N
Syn = D, Iy,ed 0= 1kdysinbsing+4) (6-85h)
' n=1
Equation (6-85) indicates that the pattern of a rectangular array is the product of the
array factors of the arrays in the x- and y-directions.
If the amplitude excitation coefficients of the elements of the array in the y-
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direction are proportional to those along the x, the amplitude of the (m. n)th element
can be written as

[mn - Imi ’l.-r {6'86)
If in addition the amplitude excitation of the entire array is uniform (/,,, = /). (6-
84a) can be expressed as
M N
AF = [U E ej(m—IJ(kd.sinﬂi:ns‘;tﬁ‘i-ﬂ,} 2 ej(n-l)(_kd.sintisimﬁi'—ﬁ,) (6_8?‘)
|

m= n=]

According to (6-6), (6-10), and (6-10c¢), the normalized form of (6-87) can also be

writlen as
sin (ﬂ l,b,‘) sin (E !!’v)
: ’ 1 il (6-88)
AF_.,(G, (f’) o rop g ”
sin 7 sin >
where
Y, = kd, sin 0 cos ¢ + B, (6-88a)
Yy, = kd, sin 0 sin ¢ + fB, (6-88b)

When the spacing between the elements is equal or greater than A/2, multiple
maxima ol equal magnitude can be formed. The principal maximum is referred to as
the major lobe and the remaining as the grating lobes. A grating lobe is defined as
“'a lobe, other than the main lobe, produced by an array antenna when the inter
element spacing is sufficiently large to permit the in-phase addition of radiated fields
in more than one direction.”” To form or avoid grating lobes in a rectangular array,
the same principles must be satisfied as for a linear array. To avoid grating lobes in
the x-z and y-z planes, the spacing between the elements in the x- and y-directions,
respectively, must be less than A/2 (d, < A/2 and d, < A/2).

For a rectangular array, the major lobe and grating lobes of S, and S, in (6-852)
and (6-85b) are located at

kd, sin fcos ¢ + B, = *+2mm o= 0 1525505 (6-89a)
kd,sin @sin ¢ + B, = *2nw =0 BB (6-89b)

The phases 8, and B, are independent of each other, and they can be adjusted so that
the main beam of §,, is not the same as that of S,,. However, in most practical
applications 1t is required that the conical main beams of §,, and §,, imersect and
their maxima be directed toward the same direction. If it is desired to have only one
main beam that is directed along 6 = 6, and ¢ = ¢y, the progressive phase shift
between the elements in the x- and y-directions must be equal to

B = —kd, sin B cos ¢y (6-90a)
By = —kd, sin t sin ¢ {6-90b)

Il




312 Chapter 6 Arrays: Linear, Planar, and Circular

When solved simultaneously, (6-90a) and (6-90b) can also be expressed as

tan ¢y, = gt—jf (6-91a)
3 2
sin® 6, = (%) + (%) (6-91b)
The principal maximum (m = n = 0) and the grating lobes can be located by
kd,(sin @ cos ¢ — sin b, cos ¢y) = *=2mm. m=0,1,2,... (6-92a)
kd,(sin € sin ¢ — sin @ sin ¢y) = =2nm, n=012,... (6-92b)
or

sin @ cos ¢ — sin G, cos ¢y = + n;—A g § 1 B L (6-93a)

sin # sin ¢ — sin By sin by = + I;—A n=2012... (6-93b)

which, when solved simultaneously, reduce 1o

& scpanr sin O sin ¢y = nA/d, (6-942)
i sin g cos ¢y EmAld,

and

9 = sin~! |:sin By cos dy im:\fdx] = ala = [sm ty sin by inz\,’d_‘.]

(6-94b)

cos ¢ sin ¢

In order for a true grating lobe to occur. both forms of (6-94b) must be satisfied
simultaneously (i.e., [ead to the same ¢ value).

To demonstrate the principles of planar array theory, the three-dimensional pattern
of a5 X 5 element array of uniform amplitude, 8, = B, = 0, and d, = d, = A4,
is shown in Figure 6.24. The maximum is oriented along #, = 0° and only the pattern
above the x-y plane is shown. An identical pattern is formed in the lower hemisphere
which can be diminished by the use of a ground plane.

To examine the pattern variation as a function of the element spacing, the three-
dimensional pattern of the same 5 X 5 element array of isotropic sources with d, =
dy, = A2 and B, = B, = 0 is displayed in Figure 6.25. As contrasted with Figure
6.24, the pattern of Figure 6.25 exhibits complete minor lobes in all planes. Figure
6.26 displays the corresponding two-dimensional elevation patterns with cuts at
¢ = 0° (x-z plane), ¢ = 90° (y-z plane), and ¢ = 45°. The two principal patterns
(b = 0% and ¢ = 90°) are identical. The patterns of Figures 6.24 and 6.25 display a
four-fold symmetry.

As discussed previously, arrays possess wide versatility in their radiation char-
acteristics., The most common characteristic of an array is its scanning mechanism.
To illustrate that, the three-dimensional pattern of the same 5 X 5 element array, with
its maximum oriented along the 6, = 30°% ¢, = 45° is plotted in Figure 6.27. The
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Figure 6.24 Three-dimensional antenna pattern of a planar array of isotropic elements with
aspacing of d, = d, = M4. and equal amplitude and phase excitations.

element spacing is d, = d, = A2, The maximum is found in the first quadrant of the
upper hemisphere. The small ring around the vertical axis indicates the maximum
value of the pattern along that axis (# = 0°). The two-dimensional patterns are shown
in Figure 6.28, and they exhibit only a two-fold symmetry. The principal plane pattern
(¢ = 0°or ¢ = 90° is normalized relative to the maximum which occurs at 6, =
30° ¢y = 45° Its maximum along the principal planes (¢ = 0° or ¢ = 90°) occurs
when # = 21° and it is 17.37 dB down from the maximum at 6, = 30°, ¢y = 45°.

To illustrate the formation of the grating lobes, when the spacing between the
elements is large, the three-dimensional pattern of the 5 X 5 element array with d,
=dy = Aand B, = B, = 0 are displayed in Figure 6.29. Its corresponding two-
dimensional elevation patterns at ¢ = 0° (¢ = 90°) and ¢ = 45° are exhibited in
Figure 6.30. Besides the maxima along 6 = 0% and # = 1807 additional maxima
with equal intensity, referred to as grating lobes, appear along the principal planes
(x-z and y-z planes) when ¢ = 907, Further increase of the spacing w d, = d, = 2A
would result in additional grating lobes.

The array factor of the planar array has been derived assuming that each element
is an isotropic source. If the antenna is an array of identical elements, the total field
can be obtained by applying the pattern multiplication rule of (6-5) in a manner similar
as for the linear array.

When only the central element of a large planar array is excited and the others
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Figure 6.25 Three-dimensional antenna pattern of a planar array of isotropic elements with
a spucing of d, = d, = M2. and equal amplitude and phase excitations.

are passively terminated, it has been observed experimentally that additional nulls in
the pattern of the element are developed which are not accounted for by theory which
does not include coupling, The nulls were observed to become deeper and narrower
[16] as the number of elements surrounding the excited element increased and ap-
proached a large array. These effects became more noticeable for arrays of open
waveguides. It has been demonstrated [17] that dips at angles interior to grating lobes
are formed by coupling through surface wave propagation. The coupling decays very
slowly with distance, so that even distant elements from the driven elements experi-
ence substantial parasitic excitation. The angles where these large variations occur
can be placed outside scan angles of interest by choosing smaller element spacing
than would be used in the absence of such coupling. Because of the complexity of
the problem, it will not be pursued here any further but the interested reader is referred
{0 the published literature.

6.10.2 Beamwidith

The task of finding the beamwidth of nonuniform amplitude planar arrays is quite
formidable. Instead. a very simple procedure will be outlined which can be used to
compute these parameters for large arrays whose maximum is not scanned too far off
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Figure 6.26 Two-dimensional antenna patterns of a planar array of isotropic elements with
aspacing of d, = d, = A/2. and equal amplitude and phase excitations,

broadside. The method [18] utilizes results of a uniform linear array and the beam
broadening factor of the amplitude distribution.

The maximum of the conical main beam of the array is assumed (o be directed
toward 6, & as shown in Figure 6.31. To define a beamwidth, two planes are chosen.
One is the elevation plane defined by the angle ¢ = ¢ and the other is a plane that
is perpendicular to it. The corresponding half-power beamwidth of each is designated,
respectively, by ), and W,. For example, if the array maximum is pointing along
by = w2 and ¢y, = w/2, O, represents the beamwidth in the y-z plane and ¥, the
beamwidth in the x-y plane.

For a large array, with its maximum near broadside, the elevation plane half-
power beamwidth ®,, is given approximately by [18]
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Figure 6.27 Three-dimensional antenna pattern of a planar array of isotropic ele-
ments with a spacing of d, = d, = A2, equal amplitude, and progressive phase
excitation.

|
9, = 1 (6-95)
O \/ cos® y[O7 cos® by + @7 sin’ gy

where 0, represents the half-power beamwidth of a broadside linear array of M
elements. Similarly, 0, represents the half-power beamwidth of a broadside array of
N elements.

The values of ©, and ©,, can be obtained by using previous results. For a
uniform distribution, for example, the values of ®,; and ®,, can be obtained by using,
respectively, the lengths (L, + d,)/A and (L, + d,)/A and reading the values from the
broadside curve of Figure 6.11. For a Tschebyscheff distribution, the values of 0,4
and 0, are obtained by multiplying each uniform distribution value by the beam
broadening factor of (6-78) or Figure 6.22(a). The same concept can be used to obtain
the beamwidth of other distributions as long as their corresponding beam broadening
factors are available.

For a square array (M = N, O, = 0,), (6-95) reduces to
E'};h = @“{) Sec ﬂ(] ia ®.}0 seC Bﬁ {6"95&)

Equation (6-95a) indicates that for ¢, > 0 the beamwidth increases proportionally to
sec fy = I[/cos 6, The broadening of the beamwidth by sec @,, as 6, increases, is
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Figure 6.28 Two-dimensional antenna patterns of a planar array of isotropic elements with
a spacing ol d, = o, = A2, equal amplitude, and progressive phase excitation,

consistent with the reduction by cos 6, of the projected area of the array in the pointing
direction.

The half-power beamwidth W, in the plane that is perpendicular to the ¢ = ¢,
elevation. is given by [18§]

1
W, = fo—s " (6-96)
Vi \/ O sin® ¢y + O cos® dy
and it does not depend on 6. For a square array, (6-96) reduces to
¥y = B0 = Oy (6-96a)
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Figure 6.29 Three-dimensional antenna pattern of a planar array of isotropic elements with
aspacing of d, = d, = A, and equal amplitude and phase excitations.

The values of @,y and @, are the same as in (6-95) and (6-95a).
For a planar array, it is useful to define a beam solid angle £}, by

O, = 0,%, (6-97)

as it was done in (2-23), (2-24), and (2-26a). Using (6-95) and (6-96), (6-97) can be
expressed as

@,‘0@_‘1] sec 6'0

" 12 1 Fie)
|:sm* by + 0. 2 cos” (.t'g:l sin’ ¢y + 5 COS” (b{,]

,3{1

o, = (6-98)

6.10.3 Directivity

The directivity of the array factor AF(6, ¢) whose major beam is pointing in the
# = B, and ¢ = ¢y direction, can be obtained by employing the definition of (2-22)
and writing it as

A7 AF(6y, do)l [AF (O, o) 1*|max
J;' L [AF(H, )] [AF(O, )] sin 6 dO d

Dﬂ = {6‘99)
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Figure 6.30 Two-dimensional antenna patterns of a planar array of isotropic elements with
aspacing of &, = d, = A, and equal amplitude and phase excitations,

A novel method has been introduced [19] for integrating the terms of the directivity
expression for isotropic and conical patterns.

As in the case of the beamwidth, the task of evaluating (6-99) for nonuniform
amplitude distribution is formidable. Instead, a very simple procedure will be outlined
to compute the directivity of a planar array using data from linear arrays.

it should be pointed out that the directivity of an array with bidirectional (two-
sided pattern in free space) would be half the directivity of the same array with
unidirectional (one-sided pattern) elements (e.g.. dipoles over ground plane).

For large planar arrays, which are nearly broadside, the directivity reduces to [18]

Dy = arcos fy DD, (6-100)
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Figure 6.31 Half-power beamwidths for a conical main beam oriented toward 6 = f),
& = oy (soURCE: R, S. Elliott, “*Beamwidth and Directivity of Large Scanning Arrays,”’
Last of Two Parts, The Microwave Journal, January 1964)

where D, and D, are the directivities of broadside linear arrays each, respectively, of
length and number of elements L,, M and L., N. The factor cos fl, accounts for the
decrease of the directivity because of the decrease of the projected area of the array.
Each of the values, D, and D,, can be obtained by using (6-79) with the approprjaze
beam broadening factor f. For Tschebyscheff arrays, D, and D, can be obtained using
(6-78) or Figure 6-22(a) and (6-79). Alternatively, they can be obtained using the
araphical data of Figure 6.22(b).

For most practical amplitude distributions, the directivity of (6-100) is related to
the beam sofid angle of the same array by

m 32,400
Qﬂ(ladsz} ), (degrees?)

D, = (6-101)

where (1, is expressed in square radians or square degrees. Equation (6-101) should
be compared with (2-26) or (2-27) given by Kraus.

Example 6.11

Compute the half-power beamwidths. beam solid angle, and directivity of a planar
square array of 100 isotropic elements (10 x 10). Assume a Tschebyscheff distri-
bution, A/2 spacing between the elements, — 26 dB side lobe level, and the maximum
oriented along f, = 30% ¢y = 45°
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SOLUTION
Since in the x- and y-directions
L+ di =Ly, + d, = SA
and each is equal to L + d of Example 6.10, then
0, = 0,H=1097°
According to (6-95a)
8, = 0, sec 8 = 10.97° sec(30°) = 12.67°
~and (6-96a)
¥, = 0,4 = 10.97°
and (6-97)
Q= 0,¥, = 12.67(10.97) = 138.96 (degrees®)

The directivity can be obtained using (6-100). Since the array is square, D, = D,,
each one is equal to the directivity of Example 6.10. Thus

Dy = arcos (30°)(9.18)(9.18) = 229.28(dimensionless) = 23.60 dB
Using (6-101)

_ 32400  _ 32400
(), (degrees®)  138.96

Dy = 233.16(dimensionless) = 23.67 dB

Obviously we have an excellent agreement.

6.11 DESIGN CONSIDERATIONS

Antenna arrays can be designed to control their radiation characteristics by properly
selecting the phase and/or amplitude distribution between the elements. It has already
been shown that a control of the phase can significantly alter the radiation pattern of
an array. In fact, the principle of scanning arrays, where the maximum of the array
pattern can be pointed in different directions, is based primarily on control of the
phase excitation of the elements. In addition, it has been shown that a proper amplitude
excitation taper between the elements can be used to control the beamwidth and
sidelobe level. Typically the level of the minor lobes can be controlled by tapering
the distribution across the array; the smoother the taper from the center of the array
loward the edges, the lower the sidelobe level and the larger the half-power beam-
width, and conversely. Therefore a very smooth taper, such as that represented by a
binomial distribution or others. would result in very low sidelobe but larger half-
power beamwidth. In contrast, an abrupt distribution, such as that of uniform illumi-
nation, exhibits the smaller half-power beamwidth but the highest sidelobe level (about
—13.5 dB). Therefore, if it is desired to achieve simultaneously both a very low
sidelobe level, as well as a small half-power beamwidth, a compromise design has to
be selected. The Dolph-Tschebyscheff design of Section 6.8.3 is one such distribution.
There are other designs that can be used effectively to achieve a good compromise
between sidelobe level and beamwidth., Two such examples are the Taylor Line-
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Source (Tschebyscheff Error) and the Taylor Line-Source (One-Parameter). These
are discussed in detail in Sections 7.6 and 7.7 of Chapter 7. respectively. Both
of these are very similar to the Dolph-Tschebyscheff. with primarily the following
exceptions.

For the Taylor Tschebyscheff Error design, the number of minor lobes with the
same level can be controlled as part of the design: the level of the remaining one is
monotonically decreasing. This is in contrast to the Dolph-Tschebyscheff where all
the minor lobes are of the same level. Therefore, given the same sidelobe level, the
half-power beamwidth of the Taylor Tschebyscheff Error is slightly greater than that
of the Dolph-Tschebyscheff. For the Taylor One-Parameter design, the level of the
first minor lobe (closest to the major lobe) is controlled as part of the design: the level
of the remaining ones are monotonically decreasing. Therefore, given the same side-
lobe level, the half-power beamwidth of the Taylor One-Parameter is slightly greater
than that of the Taylor Tschebyscheff Error, which in turn is slightly greater than that
of the Dolph-Tschebyscheff design. More details of these two methods, and other
ones, can be found in Chapter 7. However there are some other characteristics that
can be used to design arrays.

Uniform arrays are usually preferred in design of direct-radiating active-planar
arrays with a large number of elementy [20]. One design consideration in satellite
antennas is the beamwidth which can be used to determine the ““footprint’” area of
the coverage. It is important to relate the beamwidth to the size of the antenna. In
addition, it is also important to maximize the directivity of the antenna within the
angular sector defined by the beamwidth, especially at the edge-of-the-coverage
(EOC) [20]. For engineering design purposes, closed-form expressions would be
desirable.

To relate the half-power beamwidth, or any other beamwidth. to the length of the
array in closed form, it is easier to represent the uniform array with a large number
of elements as an aperture. The normalized array Factor for a rectangular array is that
of (6-88). For broadside radiation (6, = 0°) and small spacings between the elements
(d, << A and d, << A), (6-88) can be used to spproximate the pattern of a uniform
illuminated aperture. In one principal plane (i.e.. x-z plane: ¢ = 0°) of Figure 6,23,
(6-88) reduces for small element spacing and large number of elements to

_(Mk.ra : )
sin 5 sin @

APl =0 =

i
sin Tsm ¥}

: (Mkau : )
sin 5 sin @

Mk, .
—

Kl
sin|— sin #
sm( 5 Sin )

z—r_ ‘. (6-102)
5 Sin 8

nf#
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¢ L, is the length of the array in the x direction. The array factor of (6-102) can
used to represent the field in a principal plane of a uniform aperture (see Sections
.1, 12.5.2 and Table 12.1). Since the maximum effective area of a uniform array
dl to its physical area A,,, = A, [see (12-37)], the maximum directivity is equal

i?IA _4_1rA 4
AE e {\.3 B )‘.1

fore the normalized power pattern in the xz-plane, multiplied by the maximum
ctivity, can be written as the product of (6-102) and (6-103), and it can be

sed as— "
. kL_l’ . H -
51Ny —— 8In
2

kL,

— sin 0
2

maximum of (6-104) occurs when # = 0°. However, for any other angle 6 = 6,

maximum of the pattern occurs when

Dy = Fudis (6-103)

41L, Ly)

Pw.¢=m=( 3

(6-104)

sin(% sin 8,,) =1 (6-105)
T A
*= ksinB, 2sn6, G-1054)

efore to maximize the directivity at the edge # = 6. of a given angular sector
"= 0 = (. the optimum aperture dimension must be chosen according to (6-105a).
Doing otherwise leads to a decrease in directivity at the edge-of-the-coverage.

For a square aperture (L, = L,) the value of the normalized power pattern of
(6-104) occurs when 6 = 0°, and it is equal to

L\
PO = 0")|max = 417(:‘) (6-106)
e that al the edge of the covering, using the optimum dimension, is

IR
PO =0)= 471'(—) (—) (6-107)
Af VT

efore the value of the directivity at the edge of the desired coverage (6 = 6,),
live to its maximum value at = 0° is

PO = 0, ¢

M = (z = (.4053(dimensionless) = —3.92 dB (6-108)
P = 0°) oy

Thus the variation of the directivity within the desired coverage (0" = 0 = 6,) is less

If, for example, the length of the array for a maximum half-power beamwidth
erage is changed from the optimum or chosen to be optimized at another angle,
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then the directivity at the edge of the half-power beamwidth is reduced from the
optimum.

Similar expressions have been derived for circular apertures with uniform, para-
bolic and parabolic with — 10 dB pedestal [20], and they can be found in Chapter 12,
Section 12.7.

6.12 CIRCULAR ARRAY

The circular array. in which the elements are placed in a circular ring, is an array
configuration of very practical interest. Its applications span radio direction finding,
air and space navigation, underground propagation, radar. sonar, and many other
systems.

6.12.1 Array Factor

Referring to Figure 6.32, let us assume that N isotropic elements are equally spaced
on the x-y plane along a circular ring of the radius a. The normalized field of the array
can be written as

Lid —JkR,
E(r0.6)= 3 af—ﬁﬂ—— (6-109)
where R, is the distance from the nth element to the observation point. In general
R, = (F + @ — 2arcos )" (6-109a)
which for r = a reduces Lo
R,=r—acosth, =r— al@, a)=r — asin Ocos(¢ — ¢,) (6-109b)
where

4,4, = (4,cos ¢, + 4,sin ¢,) * (4, sin 6 cos ¢ + 4, sin fsin p + 4. cos )

= sin B cos(¢p — &, (6-109¢)
Thus (6-109) reduces. assuming that for amplitude variations R, = r. to
—r N
En(r‘ 6‘ ¢) — E a,e o+ et sin # cosidh— hy) (6"[ IO]
" n=1
where
a, = excitation coefficients (amplitude and phase) of nth
element
b, = 211-(%) = angular position of nth element on x-v plane

In general, the excitation coetficient of the nth element can be written as

a, = lel (6-111)
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Figure 6.32 Geometry of an N-element circular array,

I, = amplitude excitation of the nth element
@, = phase excitation (relative to the array center) of the nth
element
With (6-111), (6-110) can be expressed as
—fkr

E,(r, 6, &) = — [AF(6. ¢)] (6-112)

r

where
N

AF(6, (i)) . 2 ’l’”eﬁfs‘ﬂsin fheos(gdh— g+ o, | (6-112a)

n=1

Equation (6-112a) represents the array factor of a circular array of N equally
- spaced elements. To direct the peak of the main beam in the (6. ¢y) direction. the
phase excitation of the nth element can be chosen to be

o, = — ka sin 6, cos(dy — &,) (6-113)

Thus the array factor of (6-112a) can be written as

N
E / ejkulsm thoos( dh— ) — sinfl cosidy, — db,) |
"
n=1I
N

- E )r"(__,jkﬂl'cosr,’f—.cnsl!fn) [6_,] 14)

n=|

AF(6, ¢)
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Figure 6.33 Three-dimensional amplitude pattern of the array factor for a uni-
form circular array of 10 elements (C = ka = 10).

To reduce (6-114) to a simpler form. we define g, as

po = al(sin B cos ¢ — sin B cos dy)* + (sin Osin b — sin Gy sin py)’] ”21

(6-115)
Thus the exponential in (6-114) takes the form of

ka(cos r — cos i)
B kpolsin 0 cos(¢ — ¢b,) — sin O cos(y — ¢,)]
[(sin @ cos ¢ — sin # cos dy)” + (sin Osin  — sin G, sin ¢y)*]'"
(6-116)

which when expanded reduces to

ka(cos ifr — cos i)
- {cos W(sin 6 cos ¢ — sin By cos ¢by) + sin ¢, (sin 6 sin ¢ — sin G sin ;) |
- e [(sin B cos ¢ — sin O, cos ) + (sin O sin ¢ — sin H, sin By)*|'"*
(6-116a)
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Figure 6.34 Principal plane amplitude patterns of the array factor for a uniform circular
array of 10 elements (ka = 10),

Defining

sin 0 cos ¢ — sin @ cos dy
[(sin 6 cos & — sin 6 cos dy)* + (sin @ sin  — sin 6 sin ¢pp)*]'"”
(6-117)

cos & =

then
sin € = [1 — cos® £]'7?
sin @ sin ¢p — sin 6, sin oy

~ [(sin O cos ¢ — sin Gy cos d)® + (sin @ sin ¢ — sin O, sin ¢)*]'"”
(6-118)
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Thus (6-116a) and (6-114) can be rewritten, respectively, as

ka(cos ¢ — cos i) = kpy(cos ¢, cos € + sin ¢, sin &) = kp, cos(d, — &)
(6-119)

N N
AF(0, ¢) = ZI lh_ejkutr:usd»-—cosnjxu) =i 2 lne_;k;x-,tcust/a.-fl (6-120)

= n=1

where

PR [sin f sin ¢ — sin f sin rﬁ{,]

sin 0 cos ¢p — sin @, cos dy

(6-120a)

and py 18 defined by (6-115).

Equations (6-120), (6-115), and (6-120a) can be used to calculate the array factor
once N, I,. a. 6y, and ¢y, are specified. This is usually very time consuming, even for
moderately large values of N. The three-dimensional pattern of the array factor for a
10-element uniform circular array of ke = 10 is shown in Figure 6.33. The corre-
sponding two-dimensional principal plane patterns are displayed in Figure 6.34. As
the radius of the array becomes very large, the directivity of a uniform circular array
approaches the value of N, where W is equal to the number of elements. An excellent
discussion on circular arrays can be found in [21].

For a uniform amplitude excitation of each element (/, = /). (6-120) can be
written as _—

AF(6, ¢) = NIy 2, Jun(kpo)e/"™ =8 (6-121)

m= —=

where J,(x) is the Bessel function of the first kind (see Appendix V). The part of the
array factor associated with the zero order Bessel function Jy(kpy) is called the prin-
cipal term and the remaining terms are noted as the residuals. For a circular array
with a large number of elements, the term Jo(kpo) alone can be used to approximate
the two-dimensional principal plane patterns. The remaining terms in (6-121) contrib-
ute negligibly because Bessel functions of larger orders are very small.
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PROBLEMS

6.1,

Three isotropic sources, with spacing d between them, are placed along the z-axis. The
excitation coefficient of each outside element is unity while that of the center element
is 2. For a spacing of d = A4 between the elements, find the

(a) array factor

{b) angles (in degrees) where the nulls of the pattern occur (0° = 0 = 180°)

(c) angles (in degrees) where the maxima of the pattern oceur (0° = ¢ = 180°)

Two very short dipoles (*“infinitesimal ") of equal length are equidistant from the origin
with their centers lying on the y-axis, and oriented parallel to the z-axis, They are
excited with currents of equal amplitude. The current in dipole 1 (at y = —d/2) leads
the current in dipole 2 (at y = +d/2) by 907 in phase. The spacing between dipoles is
one quarter wavelength, To simplify the notation, let E;, equal the maximum magnitude
of the far field at distance r due 1o either source alone.

{a) Derive expressions for the following six principal plane patterns:

CEgo|  for & = 0°

|

2. |[Egt;y|  for ¢ = 90°
3. |Ey(d)| for 6 = 90°
4. |Ex0)] for & =0°

5. [Eq6)]  for ¢ = 90°
6. [Eg(p)| for 6= 90°

(b) Sketch the six field patterns,
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6.3. A three-element array of isotropic sources has the phase and magnitude relationships
shown. The spacing between the elements is d = A/2.
(a) Find the array factor.
(k) Find all the nulls,

e e
=
Iﬁ

#3 cr +1

6.4. Repeat Problem 6.3 when the excitation coefficients for elements #1, #2 and #3 are,
respectively, + 1, +jand —j.
6.5.  Four isotropic sources are placed along the z-axis as shown. Assuming that the ampli-
tudes of elements #1 and #2 are + | and the amplitudes of elements #3 and #4 are
— 1 (or 180 degrees out of phase with #1 and #2), find
(a) the array factor in simplified form
(b) all the nulls when d = A/2

Ll

6.6.  Three isotropic elements of equal excitation phase are placed along the y-axis, as shown
in the figure. If the relative amplitude of #1 is +2 and of #2 and #3 is + 1, find a
simplified expression for the three-dimensional unnormalized array factor,

2

A

fe— f ———f—— i ——
- 2 :jf

#3 #1 e

6.7. Design a two-clement uniform array of isotropic sources, positioned along the z-axis a
distance A/4 apart, so that its only maximum occurs along 6 = 0°. Assuming ordinary
end-fire conditions, find the
(a) relative phase excitation of each element
(b) array factor of the array
(c) directivity using the computer program DIRECTIVITY at the end of Chapter 2.

Compare it with Kraus™ approximate formula




6.8.
6.9.

6.10.

6.11.

6.13,

6:14,

6.15.
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Repeat the design of Problem 6.7 so that its only maximum occurs along # = 1807

Design a four-element ordinary end-fire array with the elements placed along the z-axis

a distance ¢ apart and with the maximum of the array factor directed toward # = 07,

For a spacing of d = A/2 between the elements find the

{a) progressive phase excitation between the elements to accomplish this

(b) angles (in degrees) where the nulls of the array factor occur

(c) angles (in degrees) where the maximum of the array factor occur

(d) beamwidth (in degrees) between the first nulls of the array factor

(e) directivity (in dB) of the array factor. Verify using the computer program DIREC-
TIVITY at the end of the chapter,

Design an ordinary end-fire uniform linear array with only one maximum so that its

directivity is 20 dB (above isotropic). The spacing between the elements is A/4. and its

length is much greater than the spacing. Determine the

(a) number of elements

(b) overall length of the array (in wavelengths)

(¢) approximate half-power beamwidth (in degrees)

(d) amplitude level (compared to the maximum of the major lobe) of the first minor
lobe (in dB)

(e) progressive phase shift between the elements (in degrees).

Redesign the ordinary end-fire uniform array of Problem 6.10 in order to increase its

directivity while maintaining the same. as in Problem 6.10, the uniformity, number of

elements, spacing between them, and end-fire radiation.

(a) What different from the design of Problem 6.10 are vou going to do to achieve
this? Be very specific, and give values.

(b) By how many decibels (maximum) can you increase the directivity, compared 1o
the design of Problem 6.107

(¢) Are you expecting the half-power beamwidth to increase or decrease? Why increase
or decrease and by how much?

(d) What antenna figure-of-merit will be degraded by this design? Be very specific in
naming it, and why is it degraded?

Ten isotropic elements are placed along the z-axis. Design a Hansen-Woodyard end-

fire array with the maximum directed toward § = 180° Find the:

(a) desired spacing

(b) progressive phase shift 8 (in radians)

(c) location of all the nulls (in degrees)

(d) first null beamwidth (in degrees)

(e) directivity: verify using the computer program DIRECTIVITY at the end of the
chapter

An array of 10 isotropic elements are placed along the :-axis a distance d aparl.

Assuming uniform distribution, find the progressive phase (in degrees), half-power

beamwidth (in degrees), first null beamwidth (in degrees), first side lobe level maximum

beamwidth (in degrees). relative side lobe level maximum (in dB), and directivity (in

dB) (using equations and the computer program DIRECTIVITY at the end of Chapter

2, and compare) for

(a) broadside (c) Hansen-Woodyard end-fire

(b) ordinary end-fire

arrays when the spacing between the elements is d = A4,

Find the beamwidth and directivity of a 10-element uniform scanning array of isotropic

sources placed along the z-axis. The spacing between the elements is A/4 and the

maximuni is directed at 457 from its axis.

Show that in order for a uniform array of N elements not to have any minor lobes, the

spacing and the progressive phase shift between the elements must be

(a) d = AN, B = 0 lor a broadside array.

(b) d = M(2N). B = =& kd for an ordinary end-fire array.
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6.16.

6.17.

6.18.

6.19.

6.22,

A uniform array of 20 isotropic elements is placed along the z-axis a distance A/4 apart

with a progressive phase shift of 8 rad. Calculate 8 (give the answer in radians) for the

following array types:

(a) broadside

(b) end-fire with maximum at § = 0°

(¢) end-fire with maximum at 8 = |80°

(d) phased array with maximum aimed at ¢ = 30°

(e) Hansen-Woodyard with maximum at 6 = (°

(f) Hansen-Woodyard with maximum at # = 180°

Design a 19-element uniform linear scanning array with a spacing of A/4 between the

elements.

(a) What is the progressive phase excitation between the elements so that the maximum
of the array factor is 30° from the line where the elements are placed?

(h) What is the half-power beamwidth (in degrees) of the array factor of part a? Verify
using the computer program al the end of this chapter.

(c) What is the value (in dB) of the maximum of the first minor lobe?

For a uniform broadside linear array of 10 isotropic elements. determine the approximate

directivity (in dB) when the spacing between the elements is

(a) A4

(b) A2

{c) 3IN4

(d) A

Compare the values with those obtained using the computer program at the end of this

chapter.

The maximum distance & between the ¢lements in a linear scanning array to suppress

grating lobes is

A

dn‘l.us e S T T
1+ [cos(d)|

where 6, is the direction of the pattern maximum. What is the maximum distance
between the elements, withoul introducing grating lobes, when the array is designed to
scan to maximum angles of

(a) B, = 30°

(b) By = 45°

(¢) 6, = 60°

An array of 4 isotropic sources is formed by placing one at the origin, and one along
the -, y-, and z-axes a distance d from the origin. Find the array factor for all space.
The excitation coelficient of each element is identical.

Design a linear array of isotropic elements placed along the z-axis such that the nulls
of the array factor occur at § = 0 and § = 45°, Assume that the elements are spaced
a distance of A/4 apart and that 8 = 07,

(a) Sketch and label the visible region on the unit circle

(b) Find the required number of elements

(¢) Determine their excitation coefficients

Design a linear array ol isotropic elements placed along the z-axis such that the zeros
of the array factor occur at # = 10° 70°, and 110°. Assume that the elements are spaced
a distance of A/4 apart and that B = 45°,

(a) Sketch and label the visible region on the unit circle

(b) Find the required number of elements

(¢) Determine their excitation coefficients

Repeat Problem 6.22 so that the nulls occur at # = 07, 50° and 100°. Assume a spacing
of A/5 and 8 = 07 between the elements,

Il
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6.27.

6.28.

6.29,
6.30.

6.31.
6.32.

6.34.

6.35.
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Design a three-element binomial array of isotropic elements positioned along the z-axis

a distance d apart. Find the

(1) normalized excitation coefficients (c) nulls of the array factor ford = A

(b) array fuctor (d) maxima of the array factor ford = A

Show that a three-element binomial array with a spacing of d = A/2 between the

elements does not have a side lobe.

Four isotropic sources are placed symmetrically along the z-axis a distance d apart.

Design a binomial array. Find the

(a) normalized excitation coefficients

(b} array factor

(c) angles (in degrees) where the array factor nulls occur when o = 3A/4

Five isotropic sources are placed symmetrically along the z-axis, each separated from

its neighbor by an electrical distance kd = 57/4. For a binomial array, find

(a) the excitation coefficients

(b) the array factor

(¢) the normalized power pattern

(d) the angles (in degrees) where the nulls (if any) occur

Verify parts of the problem using the computer program at the end of this chapter.

Design a four-element binomial array of A/2 dipoles, placed symmetrically along the

x-axis a distance o apart. The length of each dipole is parallel to the z-axis.

(a) Find the normalized excitation coefficients.

(b) Write the array factor for all space.

(¢) Wrile expressions for the E-fields for all space,

Repeat the design of Problem 6.28 when the A/2 dipoles are placed along the y-axis.

Design a broadside binomial array of six elements placed along the z-axis separated by

a distance d = A2.

(a) Find the amplitude excitation coefficients (a,’s).

(b) What is the progressive phase excitation between the elements?

(¢) Write the array factor.

(d) Now assume that the elements are A/4 dipoles oriented in the z-direction. Write the
expression [or the electric field veeror in the far field.

Verify parts of the problem using the computer program at the end of this chapter.

Repeat Problem 6.30 for an array of seven elements.

Five isotropic elements, with spacing ¢ between them. are placed along the z-axis. For

a binomial amplitude distribution,

(a) write the array factor in its most simplified form

(b) compute the directivity (in dB) using the computer program at the end of this
chapter (d = A2)

{c) find the nulls of the array when d = M0° = § = 180°)

Repeat the design of Problem 6.24 for a Dolph-Tschebyscheff array with a side lobe

level of —20 dB.

Design a three-element, —40 dB side lobe level Dolph-Tschebyscheff array of isotropic

elements placed symmetrically along the z-axis. Find the

(a) amplitude excitation coefficients

(b) array factor

(c) angles where the nulls oceur for d = 304 (0° = 6 = 180°)

(d) directivity for d = 3A/4

(e) half-power beamwidth for d = 3A/4

Design a four-element. —40 dB side lobe level Dolph-Tschebyscheff array of isotropic

elements placed symmetrically about the z-axis. Find the

(a) amplitude excitation coefficients (¢) angles where the nulls occur

(b) array factor ford = 3A/4.

Verify parts ol the problem using the computer program at the end of this chapter.
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6.36.

6.37.

6.38,

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

Repeat the design of Problem 6.35 for a five-element, — 20 dB Dolph-Tschebyscheff

array.

Repeat the design of Problem 6.35 for a six-element, — 20 dB Dolph-Tschebyscheff

array,

Repeat the design of Problem 6.28 for a Doelph-Tschebyscheff distribution of —40 dB

side lobe level and A/4 spacing between the elements. In addition, find the

(a) directivity of the entire array

(b) half-power beamwidths of the entire array in the x-y and y-z planes

Repeat the design of Problem 6.29 for a Dolph-TschebyschelT distribution of —40 JdB

side lobe level and A/ spacing between the elements. In addition, find the

(a) directivity of the entire array

(b) half-power beamwidths of the entire array in the x-y and x-z planes

Design a five-element, —40 dB side lobe level Dolph-Tschebyschelf array of isotropic

elements. The elements are placed along the x-axis with a spacing of A/4 between them.

Determine the

(a} normalized amplitude coefficients

(b) array lactor

(¢} directivity

(d) hall-power beamwidth

The total length of a discrete-element array is 4A. For a —30 dB side lobe level Dolph-

Tschebyscheff design and a spacing of A/2 between the elements along the z-axis, find

the

(a) number of elements

(b) excitation coethicients

(c) directivity

(d) half-power beamwidth

Design a broadside three-element, —26 dB side lobe level Dolph-Tschebyschefl array

of isotopic sources placed along the z-axis. For this design. find the

(a) normalized excitation coefficients

(b) array factor

(¢) nulls of the array factor when d = A/2 (in degrees)

(d) maxima of the array Factor when ¢ = A/2 (in degrees)

(e) beamwidth (in degrees) of the array factor when d = A/2

(f) directivity (in dB) of the array factor when d = A/2

Design a broadside uniform array, with its elements placed along the ¢ axis, so that the

directivity of the array factor is 33 dB (above isotropic). Assuming the spacing between

the elements is A/16, and it is very small compared to the overall length of the array,

determine the:

(a) Closest number of integer elements to achieve this.

(b) Overall length of the array (in wavelengths).

(¢} Half-power beamwidth (in degrees).

(d) Amplitude level (in dB) of the maximum of the first minor lobe compared to the
maximum of the major lobe.

The design of Problem 6.43 needs to be changed to a nonuniform Dolph-Tschebyscheff

so that to lower the side lobe amplitude level to — 30 dB, while maintaining the same

number of elements and spacing. For the new nonuniform design, what is the:

(a) Half-power beamwidth (in degrees).

(b) Directivity (in dB),

Design a Dolph-Tschebyschelf linear array of N elements with uniform spacing between

them. The array factor must meet the following specifications:

(1) —40 dB sidelobe level.

(2) Four complete minor lobes from 0° = # = 90° all of the same level.




6.46.

6.47.

6.48.

6,49,

6.50.

6,51,
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(3) Largest allowable spacing between the elements (in wavelengths) and still meet
above specifications,

Determine:

(a) Number of elements

(b) Excitation coefficients, normalized so that the ones of the edge clements is unity.

(¢) Maximum allowable spacing (in wavelengths) between the elements and still meet
specifications.

(d) Plot (in 17 increments) the normalized (max = 0 dB) array factor (in dB). Check
to see that the array factor meets the specifications. If not, find out what is wrong
with it

Verify parts of the problem using the computer program at the end of this chapter.

In high-performance radar arrays low-sidelobes are very desirable. In a particular ap-

plication it is desired to design a broadside linear array which maintains all the sidelobes

at the same level of —30 dB. The number of elements must be 3 and the spacing

between them must be A/4.

(a) State the design that will meet the specifications,

(b) What are the amplitude excitations of the elements?

(c) What is the half-power beamwidth (in degrees) of the main lobe?

(d)y What is the directivity (in dB) of the array?

Design a nonuniform amplitude broadside linear array of 5 elements. The total length

of the array is 2A. To meet the sidelobe and half-power beamwidth specifications, the

amplitude excitations of the elements must be that of a cosine-on-a-pedestal distribution
represented by

Amplitude distribution = 1 + cos (mx,/L)

where x,, is the position of the nth element (in terms of L) measured from the center of
the array. Determine the amplitude excitation coefficients «,’s of the five elements,
Assume uniform spacing between the elements and the end elements are located at the
edges of the array length.

It is desired to design a uniform square scanning array whose elevation half-power
beamwidth is 2°. Determine the minimum dimensions of the array when the scan
maximum angle is

(a) 6, = 30°

{c) Ay = 60°

Determine the azimuthal and elevation angles of the grating lobes for a 10 x 10
element uniform planar array when the spacing between the elements is A. The maxi-
mum of the main beam is directed toward 6, = 60°, ¢, = 90° and the array is located
on the x-y plane,

Design a 10 > 8 (10 in the x direction and 8 in the y) element uniform planar array so
that the main maximum is oriented along 6, = 10° ¢, = 90° For a spacing of
d, = d, = A8 between the elements, find the

(a) progressive phase shift between the elements in the x and y directions

{b) directivity of the array

(¢) half-power beamwidths (in two perpendicular planes) of the array

Verify the design using the computer program at the end of this chapter,

The main beam maximum of a 10 x 10 planar array of isotropic elements (100
elements) is directed toward 6, = 10 and ¢y, = 45°. Find the directivity, beamwidths
(in two perpendicular planes), and beam solid angle for a Tschebyschef! distribution
design with side lobes of —26 dB. The array is placed on the x-v plane and the elements
are equally spaced with ¢ = A/4. It should be noted that an array with bidirectional
(two-sided pattern) elements would have a directivity which would be half of that of
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6.52.
6.53.

the same array but with unidirectional (one-sided pattern) elements. Verify the design
using the computer program at the end of this chapter.

Repeat Problem 6.50 for a Tschebyscheff distribution array of — 30 dB side lobes.

In the design of uniform linear arrays, the maximum usually occurs at # = #, at the
design frequency f/ = f,, which has been used to determine the progressive phase
between the elements. As the frequency shilts from the designed center frequency f; to
[y the maximum amplitude of the array factor at f = f, is 0.707 the normalized
maximum amplitude of unity at /= f;. The frequency f, is referred to as the half-
power [requency, and it is used to determine the frequency bandwidth over which the
pattern maximum varies over an amplitude of 3 dB. Using the array factor of linear
uniform array, determine an expression for the 3-dB frequency bandwidth in terms of
the length L of the array and the scan angle &,






